概述

分布式运算程序;

优点:易于编程;良好扩展性;高容错性;适合PB级以上海量数据的离线处理;

缺点:不擅长实时计算;不擅长流式计算;不擅长DAG有向图计算;

核心思想:

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

一个完整的MapReduce在分布式运行时有3类实例进程:

MrAppMaster:负责整个程序的过程调度及状态协调;

MapTask:负责Map阶段的整个数据处理流程;

ReduceTask:负责ReduceTask阶段的整个数据处理流程;

数据序列化类型

常用的数据类型对应的Hadoop数据序列化类型
Java类型    Hadoop Writable类型
Boolean    BooleanWritable
Byte ByteWritable
Int IntWritable
Float FloatWritable
Long LongWritable
Double     DoubleWritable
String     Text
Map MapWritable
Array      ArrayWritable
Null   NullWritable

MapReduce编程规范:

用户编写的程序分成三个部分:Mapper、Reducer和Driver。

Mapper阶段:

自定义的Mapper继承父类;输入数据以K,V对的形式;业务逻辑写在map( )方法;

输出数据以K,V形式;map()方法(MapTask进程)对每一个k,v调用一次

Reduce阶段:

自定义的Reducer继承父类;输入数据类型对应Mapper的输出类型以K,V对的形式;业务逻辑写在reduce( )方法;

输出数据以K,V形式;(ReduceTask进程)对每一组相同k的k,v调用一次reduce方法

Driver 阶段:

Driver 相当于yarn集群的客户端,提交(封装了MapReduce程序相关运行参数的job对象)整个程序到yarn集群

Word Count案例 -- 创建Maven工程

在pom.xml文件中添加如下依赖

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
</dependencies>

在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

编写Mapper类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException; public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
//定义泛型: 输入是以行号: 一行文本这种形式; 输出是以aaa: 1这种形式
private Text word = new Text(); //对象定义为类的私有,是为了防止垃圾,对象太多会占用很大的JVM堆空间;
private IntWritable one = new IntWritable(1); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.切分行数据
String[] split = value.toString().split(" ");
for (String str : split) {
this.word.set(str);
//context贯彻整个页面的,
context.write(this.word, one);
} }
}

WcReduce类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator; public class WcReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
//泛型 输入aaa 1; 输出是对所有的进行统计汇总aaa 3;
private IntWritable sumAll = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()){
sum += iterator.next().get();
}
this.sumAll.set(sum);
context.write(key, this.sumAll);
}
}

WcDriver

package com.atguigu.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WcDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取一个任务实例; 获取配置信息和封装任务
Job job = Job.getInstance(new Configuration());
//2.设置jar类加载路径
job.setJarByClass(WcDriver.class);
//3.设置Mapper和Reduce类
job.setMapperClass(WcMapper.class);
job.setReducerClass(WcReduce.class);
//4.设置Mapper和Reduce最终输出的k v类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //5.设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); //6.提交任务
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}

打包jar,copy到Hadoop集群上传,然后在集群中运行

[kris@hadoop101 hadoop-2.7.2]$ rz -E    //上传jar包WordCount-1.0-SNAPSHOT.jar

[kris@hadoop101 hadoop-2.7.2]$ hadoop jar WordCount-1.0-SNAPSHOT.jar com.atguigu.mapreduce.wordcount.WcDriver /2.txt /output            //运行

Hadoop序列化

 注意:

反序列化时,需要反射调用空参构造函数,所以必须有空参构造

注意反序列化的顺序和序列化的顺序完全一致

要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口(WritableComparable< >),因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override

public int compareTo(FlowBean o) {

// 倒序排列,从大到小

return xxx ;

}

自定义bean对象实现序列化接口(Writable)

package flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; //1.实现Writable接口
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow; public FlowBean() {
super();
} public void set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = this.upFlow + this.downFlow;
} public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public String toString() {
return "上行流量=" + upFlow +
",下行流量=" + downFlow +
",总流量=" + sumFlow;
}
//写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong(); }
}
    //写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
FlowMapper类
//1.泛型是输入:行号+一行的内容; 输出:key字符手机号+类对象
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
private Text phone = new Text();
FlowBean flowBean = new FlowBean(); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split("\t");
phone.set(split[1]); //获取手机号key
flowBean.set(Long.parseLong(split[split.length-3]), Long.parseLong(split[split.length-2]));//获取upFlow和downFlow作为v
context.write(phone, flowBean);
}
} FlowReducer类 public class FlowReduce extends Reducer<Text, FlowBean, Text, FlowBean> {
private FlowBean flowBean = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
super.reduce(key, values, context);
int sumUpFlow = 0;
int sumDownFlow = 0;
for (FlowBean value : values) {
sumUpFlow += value.getUpFlow();
sumDownFlow += value.getDownFlow();
}
flowBean.set(sumUpFlow, sumDownFlow);
context.write(key, flowBean);
}
} FlowDriver类 public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job实例;获取配置信息
Job job = Job.getInstance(new Configuration());
//2.设置类路径;指定被程序的jar包所在的路径
job.setJarByClass(FlowDriver.class);
//3.设置Mapper和Reducer 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
//4.设置输出类型 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
// 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//5.设置输入输出路径
FileInputFormat.setInputPaths(job, new Path("F:\\input"));
FileOutputFormat.setOutputPath(job, new Path("F:\\output"));
//6.提交
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}

Hadoop| MapReduce01 概述的更多相关文章

  1. 大数据及Hadoop的概述

    一.大数据存储和计算的各种框架即工具 1.存储:HDFS:分布式文件系统   Hbase:分布式数据库系统   Kafka:分布式消息缓存系统 2.计算:Mapreduce:离线计算框架   stor ...

  2. Hadoop - YARN 概述

    一 概述       Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源 ...

  3. 【大数据project师之路】Hadoop——MapReduce概述

    一.概述. MapReduce是一种可用于数据处理的编程模型.Hadoop能够执行由各种语言编写的MapReuce程序.MapReduce分为Map部分和Reduce部分. 二.MapReduce的机 ...

  4. 一、Hadoop入门概述

    一.Hadoop是什么 Hadoop是一个由Apche基金会所开发的分布式系统基础架构. 主要解决海量数据的存储和海量数据的分析计算问题. 广义上来说,Hadoop通常是指一个更广泛的概念—Hadoo ...

  5. MapReduce01 概述

    MapReduce 概述 目录 MapReduce 概述 1.定义 2.优缺点 优点 缺点 3.MapReduce核心思想 4.MapReduce进程 5.官方 WordCount 源码 6.常用数据 ...

  6. hadoop核心组件概述及hadoop集群的搭建

    什么是hadoop? Hadoop 是 Apache 旗下的一个用 java 语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台.允许使用简单的编程模型在大量计算机集群上对大型数据集进行分 ...

  7. Hadoop整体概述

    目录 前言 core-site.xml hdfs-site.xml mapred-site.xml yarn-site.xml 一.HDFS HDFS的设计理念 HDFS的缺点 1.NameNode ...

  8. Hadoop & Spark

    Hadoop & Spark 概述 Apache Hadoop 是一种通过服务集群并使用MapReduce编程数据模型完成大数据的分布式处理框架,核心模块包括:MapReduce,Hadoop ...

  9. hadoop伪分布模式的配置和一些常用命令

    大数据的发展历史 3V:volume.velocity.variety(结构化和非结构化数据).value(价值密度低) 大数据带来的技术挑战 存储容量不断增加 获取有价值的信息的难度:搜索.广告.推 ...

随机推荐

  1. CURL错误代码及含义

    https://curl.haxx.se/libcurl/c/libcurl-errors.html NAME libcurl-errors - error codes in libcurl DESC ...

  2. Codeforces 938G Shortest Path Queries [分治,线性基,并查集]

    洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再 ...

  3. 如何获取STM32 MCU的唯一ID

    前段时间由于应用需要对产品授权进行限制,所以研究了一下有关STM32 MCU的唯一ID的资料,并最终利用它实现了我们的目标. 1.基本描述 在STM32的全系列MCU中均有一个96位的唯一设备标识符. ...

  4. selenium之实现多窗口切换到自己想要的窗口

    #coding=utf-8 from selenium import webdriver import time from selenium.webdriver.support import expe ...

  5. SpringData使用与整合

    SpringData 整合源码:链接: https://pan.baidu.com/s/1_dDEEJoqaBTfXs2ZWsvKvA 提取码: cp6s(jar包自行寻找) author:Simpl ...

  6. re模块(正则)

    一, 什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法. 在python中,正则内嵌在python中,并通过re模块实现,正则表达模式被编译成一系列 ...

  7. easyui 布局之window和panel一起使用时,拉动window宽高时panel不跟随一起变化

    项目开发中布局是每一个组件都由最外层的window和内部的至少一个panel组成,其他的细小组件再依次放到panel中. 问题:当拉动外部的window时我们希望内部的panel的宽高也跟着变化,但是 ...

  8. 怎么加密接口防止,API外部调用?

    服务器端与客户端各自会存储一个TOKEN,这个TOKEN我们为了防止反编译是用C语言来写的一个文件并做了加壳和混淆处理.在客户端访问服务器API任何一个接口的时候,客户端需要带上一个特殊字段,这个字段 ...

  9. Appium Desired Capabilities

    Appium Desired Capabilities Desired Capabilities 是由 keys 和 values 组成的 JSON 对象. 举个简单例子: { "platf ...

  10. maven依赖查找方法

    http://mvnrepository.com 1. 搜索依赖库         2. 选择合适版本 3. 复制配置 点击合适的版本进入,负责maven配置: <dependency> ...