Java的优先级任务队列的实践
队列的基本理解
在说队列之前说两个名词:Task是任务,TaskExecutor是任务执行器
而我们今天要说的队列就完全符合某机构这个情况,队列在有Task进来的时候TaskExecutor就立刻开始执行Task,当没有Task的时候TaskExecutor就处于一个阻塞状态,当有很多Task的时候Task也需要排队,TaskExecutor也可以是多个,并且可以指定某几个Task优先执行或者滞后执行。
综上所说我们得出一个这样的关系:队列相当于某机构,TaskExecutor相当于窗口,办事者就是Task。
普通队列
当然很多机构也没有设置什么军人优先的窗口,所以队列也有不带优先级的队列,因此我们先来实现一个非优先级的队列。
和上述某机构不一样,某机构可以先有机构,再有窗口,再有办事者。但是我们写代码的时候,要想写一个队列,那么务必要在队列中写TaskExecutor,那么就得先写好TaskExecutor类,以此类推就得先有Task类。
因此我们先写一个Task的接口,也就是办事的人,我把它设计为接口,方便办各种不同事的人进来:
// 办事的人。
public interface ITask {
// 办事,我们把办事的方法给办事的人,也就是你要办什么事,由你自己决定。
void run();
}
接下来再写一个TaskExecutor的类,也就是窗口,用来执行Task,认真看注释,非常有助于理解:
// 窗口
public class TaskExecutor extends Thread { // 在窗口拍的队,这个队里面是办事的人。
private BlockingQueue<ITask> taskQueue; // 这个办事窗口是否在等待着办事。
private boolean isRunning = true; public TaskExecutor(BlockingQueue<ITask> taskQueue) {
this.taskQueue = taskQueue;
} // 下班。
public void quit() {
isRunning = false;
interrupt();
} @Override
public void run() {
while (isRunning) { // 如果是上班状态就待着。
ITask iTask;
try {
iTask = taskQueue.take(); // 叫下一个办事的人进来,没有人就等着。
} catch (InterruptedException e) {
if (!isRunning) {
// 发生意外了,是下班状态的话就把窗口关闭。
interrupt();
break; // 如果执行到break,后面的代码就无效了。
}
// 发生意外了,不是下班状态,那么窗口继续等待。
continue;
} // 为这个办事的人办事。
iTask.run();
}
}
}
这里要稍微解释下BlockingQueue<T>#take()方法,这个方法当队列里面的item为空的时候,它会一直处于阻塞状态,当队列中进入item的时候它会立刻有一个返回值,它就和ServerSocket.accept()方法一样,所以我们把它放入一个Thread中,以免阻塞调用它的线程(Android中可能是主线程)。
办事的人和窗口都有了,下面我们封装一个队列,也就是某机构,用来管理这些窗口:
// 某机构。
public class TaskQueue { // 某机构排的队,队里面是办事的人。
private BlockingQueue<ITask> mTaskQueue;
// 好多窗口。
private TaskExecutor[] mTaskExecutors; // 在开发者new队列的时候,要指定窗口数量。
public TaskQueue(int size) {
mTaskQueue = new LinkedBlockingQueue<>();
mTaskExecutors = new TaskExecutor[size];
} // 开始上班。
public void start() {
stop();
// 把各个窗口都打开,让窗口开始上班。
for (int i = 0; i < mTaskExecutors.length; i++) {
mTaskExecutors[i] = new TaskExecutor(mTaskQueue);
mTaskExecutors[i].start();
}
} // 统一各个窗口下班。
public void stop() {
if (mTaskExecutors != null)
for (TaskExecutor taskExecutor : mTaskExecutors) {
if (taskExecutor != null) taskExecutor.quit();
}
} // 开一个门,让办事的人能进来。
public <T extends ITask> int add(T task) {
if (!mTaskQueue.contains(task)) {
mTaskQueue.add(task);
}
// 返回排的队的人数,公开透明,让外面的人看的有多少人在等着办事。
return mTaskQueue.size();
}
}
某机构、窗口、办事的人都有了,下面我们就派一个人去一件具体的事,但是上面我的Task是一个接口,所以我们需要用一个类来实现这个接口,来做某一件事:
// 做一件打印自己的id的事。
public class PrintTask implements ITask { private int id; public PrintTask(int id) {
this.id = id;
} @Override
public void run() {
// 为了尽量模拟窗口办事的速度,我们这里停顿两秒。
try {
Thread.sleep(2000);
} catch (InterruptedException ignored) {
} System.out.println("我的id是:" + id);
}
}
下面就让我们模拟的虚拟世界运行一次:
public class Main {
public static void main(String... args) {
// 这里暂时只开一个窗口。
TaskQueue taskQueue = new TaskQueue(1);
taskQueue.start();
for (int i = 0; i < 10; i++) {
PrintTask task = new PrintTask(i);
taskQueue.add(task);
}
}
}
没错,队列按照我们理想的状况打印出来了:
我的id是:0
我的id是:1
我的id是:2
我的id是:3
我的id是:4
我的id是:5
我的id是:6
我的id是:7
我的id是:8
我的id是:9
上面我门只开了一个窗口,下面我多开几个窗口:
public class Main {
public static void main(String... args) {
// 开三个窗口。
TaskQueue taskQueue = new TaskQueue(3);
taskQueue.start(); // 某机构开始工作。
for (int i = 0; i < 10; i++) {
// new 10 个需要办事的人,并且进入某机构办事。
PrintTask task = new PrintTask(i);
taskQueue.add(task);
}
}
}
这里要说明一下,在初始化的时候我们开了3个窗口,内部的顺序应该是这样的:
当某机构的大门开了以后,第一个办事的人进去到了第一个窗口,第二个办事的人进去到了第二个窗口,第三个办事的人进去到了第三个窗口,第四个办事的人进去排队在第一位,当第一、第二、第三个窗口中不论哪一个窗口的事办完了,第四个人就去哪一个窗口继续办事,第五个人等待,一次类推。这样子就达到了队列同事并发三个任务的效果。
这就是一个普通的队列,其它的一些特性也是基于此再次封装的,那么下面我就基于此再把人物的优先级加上,也就是我们上面说的特殊窗口->军人优先!
优先级队列
我们排队等待办事的时候,来了一个办事的人,那么如何判断这个办事人是否可以优先办理呢?那就要判断它是否具有优先的权限甚至他可以优先到什么程度。
所以我们需要让这个Task有一标志,那就是优先级,所以我用一个枚举类标记优先级:
public enum Priority {
LOW, // 最低。
DEFAULT, // 默认级别。
HIGH, // 高于默认级别。
Immediately // 立刻执行。
}
这里我把分了四个等级:最低、默认、高、立刻,这个等级肯定要给到我们的办事的人,也就是Task
public interface ITask {
void run();
void setPriority(Priority priority);
Priority getPriority();
}
可以设置优先级和可以拿到优先级。
下面我们要把上面的LinkedBlockingQueue替换成PriorityBlockingQueue<E>,因为它可以自动做到优先级的比较,它要求泛型<E>,也就是我们的Task必须实现Comparable<E>接口,而Comparable<E>有一个compareTo(E)方法可以对两个<T>做比较,因此我们的队列需要改一下实现的方法:
// 某机构。
public class TaskQueue { // 某机构排的队,队里面是办事的人。
private BlockingQueue<ITask> mTaskQueue;
// 好多窗口。
private TaskExecutor[] mTaskExecutors; // 在开发者new队列的时候,要指定窗口数量。
public TaskQueue(int size) {
mTaskQueue = new PriorityBlockingQueue<>();
mTaskExecutors = new TaskExecutor[size];
} ...
然后ITask接口继承Comparable<E>接口:
public interface ITask extends Comparable<ITask> {
void run();
void setPriority(Priority priority);
Priority getPriority();
}
因为有setPriority(Priority)方法和getPriority()方法和Comparable<E>的compareTo(E)方法,所以我们的每一个Task都需要实现这几个方法,这样就会很麻烦,所以我们封装一个BasicTask:
public abstract class BasicTask implements ITask {
// 默认优先级。
private Priority priority = Priority.DEFAULT;
@Override
public void setPriority(Priority priority) {
this.priority = priority;
}
@Override
public Priority getPriority() {
return priority;
}
// 做优先级比较。
@Override
public int compareTo(ITask another) {
final Priority me = this.getPriority();
final Priority it = another.getPriority();
return me == it ? [...] : it.ordinal() - me.ordinal();
}
}
其它都好说,我们看到compareTo(E)方法就不太理解了,这里说一下这个方法:
compareTo(E)中传进来的E是另一个Task,如果当前Task比另一个Task更靠前就返回负数,如果比另一个Task靠后,那就返回正数,如果优先级相等,那就返回0。
这里要特别注意,我们看到上面当两个Task优先级不一样的时候调用了Priority.orinal()方法,并有后面的orinal减去了当前的orinal,怎么理解呢?首先要理解Priority.orinal()方法,在Java中每一个枚举值都有这个方法,这个枚举的值是它的下标+1,也就是[index + 1],所以我们写的Priority类其实可以这样理解:
public enum Priority {
1,
2,
3,
4
}
继续,如果给当前Task比较低,给compareTo(E)中的Task设置的优先级别比较高,那么Priority不一样,那么返回的值就是整数,因此当前Task就会被PriorityBlockingQueue<E>排到后面,如果调换那么返回结果也就调换了。
但是我们注意到me == it ? [...] : it.ordinal() - me.ordinal();中的[...]是什么鬼啊?因为这里缺一段代码呀哈哈哈(这个作者怎么傻乎乎的),这一段代码的意思是当优先级别一样的时候怎么办,那就是谁先加入队列谁排到前面呗,那么怎样返回值呢,我们怎么知道哪个Task先加入队列呢?这个时候可爱的我就出现了,我给它给一个序列标记它什么时候加入队列的不久完事了,于是我们可以修改下ITask接口,增加两个方法:
public interface ITask extends Comparable<ITask> {
void run();
void setPriority(Priority priority);
Priority getPriority();
void setSequence(int sequence);
int getSequence();
}
我们用setSequence(int)标记它加入队列的顺序,然后因为setSequence(int)和getSequence()是所有Task都需要实现的,所以我们在BasicTask中实现这两个方法:
public abstract class BasicTask implements ITask {
// 默认优先级。
private Priority priority = Priority.DEFAULT;
private int sequence;
@Override
public void setPriority(Priority priority) {
this.priority = priority;
}
@Override
public Priority getPriority() {
return priority;
}
@Override
public void setSequence(int sequence) {
this.sequence = sequence;
}
@Override
public int getSequence() {
return sequence;
}
// 做优先级比较。
@Override
public int compareTo(ITask another) {
final Priority me = this.getPriority();
final Priority it = another.getPriority();
return me == it ? this.getSequence() - another.getSequence() :
it.ordinal() - me.ordinal();
}
}
看到了吧,刚才的[...]已经变成了this.getSequence() - another.getSequence(),这里需要和上面的it.ordinal() - me.ordinal();的逻辑对应,上面说到如果给当前Task比较低,给compareTo(E)中的Task设置的优先级别比较高,那么Priority不一样,那么返回的值就是整数,因此当前Task就会被PriorityBlockingQueue<E>排到后面,如果调换那么返回结果也就调换了。
这里的逻辑和上面对应就是和上面的逻辑相反,因为这里是当两个优先级一样时的返回,上面是两个优先级不一样时的返回,所以当优先级别一样时,返回负数表示当前Task在前,返回正数表示当前Task在后,正好上面上的逻辑对应。
接下来就是给Task设置序列了,于是我们在TaskQueue中的T void add(T)方法做个手脚:
public class TaskQueue {
private AtomicInteger mAtomicInteger = new AtomicInteger();
...
public TaskQueue(int size) {
...
}
public void start() {
...
}
public void stop() {
...
}
public <T extends ITask> int add(T task) {
if (!mTaskQueue.contains(task)) {
task.setSequence(mAtomicInteger.incrementAndGet()); // 注意这行。
mTaskQueue.add(task);
}
return mTaskQueue.size();
}
}
这里我们使用了AtomicInteger类,它的incrementAndGet()方法会每次递增1,其实它相当于:
mAtomicInteger.addAndGet(1);
其它具体用法请自行搜索,这里不再赘述。
到此为止,我们的优先级别的队列就实现完毕了,我们来做下测试:
public static void main(String... args) {
// 开一个窗口,这样会让优先级更加明显。
TaskQueue taskQueue = new TaskQueue(1);
taskQueue.start(); // // 某机构开始工作。
// 为了显示出优先级效果,我们预添加3个在前面堵着,让后面的优先级效果更明显。
taskQueue.add(new PrintTask(110));
taskQueue.add(new PrintTask(112));
taskQueue.add(new PrintTask(122));
for (int i = 0; i < 10; i++) { // 从第0个人开始。
PrintTask task = new PrintTask(i);
if (1 == i) {
task.setPriority(Priority.LOW); // 让第2个进入的人最后办事。
} else if (8 == i) {
task.setPriority(Priority.HIGH); // 让第9个进入的人第二个办事。
} else if (9 == i) {
task.setPriority(Priority.Immediately); // 让第10个进入的人第一个办事。
}
// ... 其它进入的人,按照进入顺序办事。
taskQueue.add(task);
}
没错这就是我们看到的效果:
我的id是:9
我的id是:8
我的id是:110
我的id是:112
我的id是:122
我的id是:0
我的id是:2
我的id是:3
我的id是:4
我的id是:5
我的id是:6
我的id是:7
我的id是:1
Java的优先级任务队列的实践的更多相关文章
- [转载]Java 应用性能调优实践
Java 应用性能调优实践 Java 应用性能优化是一个老生常谈的话题,笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层.数据库层.框架层.JVM 层.通过介绍 Java 性能诊断工具 ...
- paip.java gui swt/jface 最佳实践
paip.java gui swt/jface 最佳实践 1. 工具:Eclipse +jigloo4 1 2. 安装插件: 1 1. IMPORT swt lib 2 2. 新建立窗体 2 3. 运 ...
- Java运算符优先级(转)
转自:http://www.cnblogs.com/gw811/archive/2012/10/13/2722752.html Java运算符优先级 序列号 符号 名称 结合性(与操作数) 目数 说明 ...
- 【转】Java运算符优先级
原文网址:http://www.cnblogs.com/gw811/archive/2012/10/13/2722752.html Java运算符优先级 序列号 符号 名称 结合性(与操作数) 目数 ...
- java多线程中最佳的实践方案是什么?
java多线程中最佳的实践方案是什么? 给你的线程起个有意义的名字.这样可以方便找bug或追踪.OrderProcessor, QuoteProcessor or TradeProcessor 这种名 ...
- Java序列化与反序列化(实践)
Java序列化与反序列化(实践) 基本概念:序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数据. 昨天在一本书上 ...
- paip.提升性能--多核编程中的java .net php c++最佳实践 v2.0 cah
paip.提升性能--多核编程中的java .net php c++最佳实践 v2.0 cah 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源:attilax ...
- JAVA异常的最佳工程学实践探索
此文已由作者占金武授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 先说明一下背景: 项目日志中的Exception会被哨兵统一监控并报警 比较多的项目基于dubbo在做服务化 ...
- atitit.Atitit. Gui控件and面板-----服务端控件 java struts的实现最佳实践
atitit.Atitit. Gui控件and面板-----服务端控件 java struts的实现最佳实践 1. 服务器控件的类别 1 1.1. 数据控件:该类控件可细分为两种类型:数据源控件和数 ...
随机推荐
- deepin卸载mysql并安装设置mysql5.7
mysql完全卸载以及安全安装 完全卸载 sudo apt purge mysql-* sudo rm -rf /etc/mysql/ /var/lib/mysql sudo apt autoremo ...
- asp.net MVC 上传文件 System.Web.HttpException: 超过了最大请求长度
APS.NET MVC 上传文件出现 System.Web.HttpException: 超过了最大请求长度 这个问题 原因是 默认最大上传文件大小为4096,而我提交的文件太大了. 解决方案:修改 ...
- TCP/IP 笔记 - TCP数据流和窗口管理
TCP流量控制机制通过动态调整窗口大小来控制发送端的操作,确保路由器/接收端消息不会溢出. 交互式TCP连接 交互式TCP连接指该连接需要在客户端和服务器之间传输用户输入信息,如按键操作.短消息.操作 ...
- 高性能Mysql笔记 — 优化
性能优化 了解查询的整个生命周期,清楚每个阶段的时间消耗情况 性能分析 慢查询日志--服务器性能分析 参考 慢查询日志是优化很重要的手段,但是开启慢查询日志对性能的影响并不大,所以可以考虑在线上打开慢 ...
- 微信分享JS-SDK
微信JS-SDK,提供给开发者的基于微信内的网页开发工具包 使用微信JS-SDK,网页开发者可借助微信高效地使用拍照.选图.语音.位置等手机系统的能力,同时可以直接使用微信分享.扫一扫.卡券.支付等微 ...
- tensorflow 1.12.0 gpu + python3.6.8 + win10 + GTX1060 + cuda9.0 + cudnn7.4 + vs2017)
在安装tensorflow-gpu时,也看过不少的博客,讲得乱七八糟的,也不能这样说,只是每个人安装的环境或需求不一样,因此没有找到一个适合自己的教程去安装tensorflow-gpu版本.当然,入手 ...
- Android Handler 机制总结
写 Handler 原理的文章很多,就不重复写了,写不出啥新花样.这篇文章的主要是对 handler 原理的总结. 1.Android消息机制是什么? Android消息机制 主要指 Handler ...
- 翻译:非递归CTE(已提交到MariaDB官方手册)
本文为mariadb官方手册:非递归CTE的译文. 原文:https://mariadb.com/kb/en/library/non-recursive-common-table-expression ...
- 配置 FATFS 支持长文件名
FATFS 版本:Nov 09 14 R0.10c 在 FATFS 已经移植好的基础上,首先打开 ffconf.h 配置文件,找到如下图配置项: 可以将此值从 0 改为 1 使用 static wor ...
- Javascript 组合继承 原型链继承 寄生继承
Javascript继承通常有三种方式. 第一种:组合式继承: function SuperType(name) { this.name = name; this.colors = ["re ...