队列的基本理解

在说队列之前说两个名词:Task是任务,TaskExecutor是任务执行器

而我们今天要说的队列就完全符合某机构这个情况,队列在有Task进来的时候TaskExecutor就立刻开始执行Task,当没有Task的时候TaskExecutor就处于一个阻塞状态,当有很多Task的时候Task也需要排队,TaskExecutor也可以是多个,并且可以指定某几个Task优先执行或者滞后执行。

综上所说我们得出一个这样的关系:队列相当于某机构TaskExecutor相当于窗口办事者就是Task

普通队列

当然很多机构也没有设置什么军人优先的窗口,所以队列也有不带优先级的队列,因此我们先来实现一个非优先级的队列。

和上述某机构不一样,某机构可以先有机构,再有窗口,再有办事者。但是我们写代码的时候,要想写一个队列,那么务必要在队列中写TaskExecutor,那么就得先写好TaskExecutor类,以此类推就得先有Task类。

因此我们先写一个Task的接口,也就是办事的人,我把它设计为接口,方便办各种不同事的人进来:

// 办事的人。
public interface ITask {
// 办事,我们把办事的方法给办事的人,也就是你要办什么事,由你自己决定。
void run();
}

接下来再写一个TaskExecutor的类,也就是窗口,用来执行Task,认真看注释,非常有助于理解:

// 窗口
public class TaskExecutor extends Thread { // 在窗口拍的队,这个队里面是办事的人。
private BlockingQueue<ITask> taskQueue; // 这个办事窗口是否在等待着办事。
private boolean isRunning = true; public TaskExecutor(BlockingQueue<ITask> taskQueue) {
this.taskQueue = taskQueue;
} // 下班。
public void quit() {
isRunning = false;
interrupt();
} @Override
public void run() {
while (isRunning) { // 如果是上班状态就待着。
ITask iTask;
try {
iTask = taskQueue.take(); // 叫下一个办事的人进来,没有人就等着。
} catch (InterruptedException e) {
if (!isRunning) {
// 发生意外了,是下班状态的话就把窗口关闭。
interrupt();
break; // 如果执行到break,后面的代码就无效了。
}
// 发生意外了,不是下班状态,那么窗口继续等待。
continue;
} // 为这个办事的人办事。
iTask.run();
}
}
}

这里要稍微解释下BlockingQueue<T>#take()方法,这个方法当队列里面的item为空的时候,它会一直处于阻塞状态,当队列中进入item的时候它会立刻有一个返回值,它就和ServerSocket.accept()方法一样,所以我们把它放入一个Thread中,以免阻塞调用它的线程(Android中可能是主线程)。

办事的人和窗口都有了,下面我们封装一个队列,也就是某机构,用来管理这些窗口:

// 某机构。
public class TaskQueue { // 某机构排的队,队里面是办事的人。
private BlockingQueue<ITask> mTaskQueue;
// 好多窗口。
private TaskExecutor[] mTaskExecutors; // 在开发者new队列的时候,要指定窗口数量。
public TaskQueue(int size) {
mTaskQueue = new LinkedBlockingQueue<>();
mTaskExecutors = new TaskExecutor[size];
} // 开始上班。
public void start() {
stop();
// 把各个窗口都打开,让窗口开始上班。
for (int i = 0; i < mTaskExecutors.length; i++) {
mTaskExecutors[i] = new TaskExecutor(mTaskQueue);
mTaskExecutors[i].start();
}
} // 统一各个窗口下班。
public void stop() {
if (mTaskExecutors != null)
for (TaskExecutor taskExecutor : mTaskExecutors) {
if (taskExecutor != null) taskExecutor.quit();
}
} // 开一个门,让办事的人能进来。
public <T extends ITask> int add(T task) {
if (!mTaskQueue.contains(task)) {
mTaskQueue.add(task);
}
// 返回排的队的人数,公开透明,让外面的人看的有多少人在等着办事。
return mTaskQueue.size();
}
}

某机构、窗口、办事的人都有了,下面我们就派一个人去一件具体的事,但是上面我的Task是一个接口,所以我们需要用一个类来实现这个接口,来做某一件事:

// 做一件打印自己的id的事。
public class PrintTask implements ITask { private int id; public PrintTask(int id) {
this.id = id;
} @Override
public void run() {
// 为了尽量模拟窗口办事的速度,我们这里停顿两秒。
try {
Thread.sleep(2000);
} catch (InterruptedException ignored) {
} System.out.println("我的id是:" + id);
}
}

下面就让我们模拟的虚拟世界运行一次:

public class Main {

    public static void main(String... args) {
// 这里暂时只开一个窗口。
TaskQueue taskQueue = new TaskQueue(1);
taskQueue.start(); for (int i = 0; i < 10; i++) {
PrintTask task = new PrintTask(i);
taskQueue.add(task);
}
} }

没错,队列按照我们理想的状况打印出来了:

我的id是:0
我的id是:1
我的id是:2
我的id是:3
我的id是:4
我的id是:5
我的id是:6
我的id是:7
我的id是:8
我的id是:9

上面我门只开了一个窗口,下面我多开几个窗口:

public class Main {

    public static void main(String... args) {
// 开三个窗口。
TaskQueue taskQueue = new TaskQueue(3);
taskQueue.start(); // 某机构开始工作。 for (int i = 0; i < 10; i++) {
// new 10 个需要办事的人,并且进入某机构办事。
PrintTask task = new PrintTask(i);
taskQueue.add(task);
}
}
}

这里要说明一下,在初始化的时候我们开了3个窗口,内部的顺序应该是这样的:

某机构的大门开了以后,第一个办事的人进去到了第一个窗口,第二个办事的人进去到了第二个窗口,第三个办事的人进去到了第三个窗口,第四个办事的人进去排队在第一位,当第一、第二、第三个窗口中不论哪一个窗口的事办完了,第四个人就去哪一个窗口继续办事,第五个人等待,一次类推。这样子就达到了队列同事并发三个任务的效果。

这就是一个普通的队列,其它的一些特性也是基于此再次封装的,那么下面我就基于此再把人物的优先级加上,也就是我们上面说的特殊窗口->军人优先!

优先级队列

我们排队等待办事的时候,来了一个办事的人,那么如何判断这个办事人是否可以优先办理呢?那就要判断它是否具有优先的权限甚至他可以优先到什么程度。

所以我们需要让这个Task有一标志,那就是优先级,所以我用一个枚举类标记优先级:

public enum Priority {
LOW, // 最低。
DEFAULT, // 默认级别。
HIGH, // 高于默认级别。
Immediately // 立刻执行。
}

这里我把分了四个等级:最低默认立刻,这个等级肯定要给到我们的办事的人,也就是Task

public interface ITask {

    void run();

    void setPriority(Priority priority);

    Priority getPriority();
}

可以设置优先级和可以拿到优先级。

下面我们要把上面的LinkedBlockingQueue替换成PriorityBlockingQueue<E>,因为它可以自动做到优先级的比较,它要求泛型<E>,也就是我们的Task必须实现Comparable<E>接口,而Comparable<E>有一个compareTo(E)方法可以对两个<T>做比较,因此我们的队列需要改一下实现的方法:

// 某机构。
public class TaskQueue { // 某机构排的队,队里面是办事的人。
private BlockingQueue<ITask> mTaskQueue;
// 好多窗口。
private TaskExecutor[] mTaskExecutors; // 在开发者new队列的时候,要指定窗口数量。
public TaskQueue(int size) {
mTaskQueue = new PriorityBlockingQueue<>();
mTaskExecutors = new TaskExecutor[size];
} ...

然后ITask接口继承Comparable<E>接口:

public interface ITask extends Comparable<ITask> {

    void run();

    void setPriority(Priority priority);

    Priority getPriority();
}

因为有setPriority(Priority)方法和getPriority()方法和Comparable<E>compareTo(E)方法,所以我们的每一个Task都需要实现这几个方法,这样就会很麻烦,所以我们封装一个BasicTask:

public abstract class BasicTask implements ITask {

    // 默认优先级。
private Priority priority = Priority.DEFAULT; @Override
public void setPriority(Priority priority) {
this.priority = priority;
} @Override
public Priority getPriority() {
return priority;
} // 做优先级比较。
@Override
public int compareTo(ITask another) {
final Priority me = this.getPriority();
final Priority it = another.getPriority();
return me == it ? [...] : it.ordinal() - me.ordinal();
}
}

其它都好说,我们看到compareTo(E)方法就不太理解了,这里说一下这个方法:

compareTo(E)中传进来的E是另一个Task,如果当前Task比另一个Task更靠前就返回负数,如果比另一个Task靠后,那就返回正数,如果优先级相等,那就返回0。

这里要特别注意,我们看到上面当两个Task优先级不一样的时候调用了Priority.orinal()方法,并有后面的orinal减去了当前的orinal,怎么理解呢?首先要理解Priority.orinal()方法,在Java中每一个枚举值都有这个方法,这个枚举的值是它的下标+1,也就是[index + 1],所以我们写的Priority类其实可以这样理解:

public enum Priority {
1,
2,
3,
4
}

继续,如果给当前Task比较低,给compareTo(E)中的Task设置的优先级别比较高,那么Priority不一样,那么返回的值就是整数,因此当前Task就会被PriorityBlockingQueue<E>排到后面,如果调换那么返回结果也就调换了。

但是我们注意到me == it ? [...] : it.ordinal() - me.ordinal();中的[...]是什么鬼啊?因为这里缺一段代码呀哈哈哈(这个作者怎么傻乎乎的),这一段代码的意思是当优先级别一样的时候怎么办,那就是谁先加入队列谁排到前面呗,那么怎样返回值呢,我们怎么知道哪个Task先加入队列呢?这个时候可爱的我就出现了,我给它给一个序列标记它什么时候加入队列的不久完事了,于是我们可以修改下ITask接口,增加两个方法:

public interface ITask extends Comparable<ITask> {

    void run();

    void setPriority(Priority priority);

    Priority getPriority();

    void setSequence(int sequence);

    int getSequence();
}

我们用setSequence(int)标记它加入队列的顺序,然后因为setSequence(int)getSequence()是所有Task都需要实现的,所以我们在BasicTask中实现这两个方法:

public abstract class BasicTask implements ITask {

    // 默认优先级。
private Priority priority = Priority.DEFAULT;
private int sequence; @Override
public void setPriority(Priority priority) {
this.priority = priority;
} @Override
public Priority getPriority() {
return priority;
} @Override
public void setSequence(int sequence) {
this.sequence = sequence;
} @Override
public int getSequence() {
return sequence;
} // 做优先级比较。
@Override
public int compareTo(ITask another) {
final Priority me = this.getPriority();
final Priority it = another.getPriority();
return me == it ? this.getSequence() - another.getSequence() :
it.ordinal() - me.ordinal();
}
}

看到了吧,刚才的[...]已经变成了this.getSequence() - another.getSequence(),这里需要和上面的it.ordinal() - me.ordinal();的逻辑对应,上面说到如果给当前Task比较低,给compareTo(E)中的Task设置的优先级别比较高,那么Priority不一样,那么返回的值就是整数,因此当前Task就会被PriorityBlockingQueue<E>排到后面,如果调换那么返回结果也就调换了。

这里的逻辑和上面对应就是和上面的逻辑相反,因为这里是当两个优先级一样时的返回,上面是两个优先级不一样时的返回,所以当优先级别一样时,返回负数表示当前Task在前,返回正数表示当前Task在后,正好上面上的逻辑对应。

接下来就是给Task设置序列了,于是我们在TaskQueue中的T void add(T)方法做个手脚:

public class TaskQueue {

    private AtomicInteger mAtomicInteger = new AtomicInteger();

    ...

    public TaskQueue(int size) {
...
} public void start() {
...
} public void stop() {
...
} public <T extends ITask> int add(T task) {
if (!mTaskQueue.contains(task)) {
task.setSequence(mAtomicInteger.incrementAndGet()); // 注意这行。
mTaskQueue.add(task);
}
return mTaskQueue.size();
}
}

这里我们使用了AtomicInteger类,它的incrementAndGet()方法会每次递增1,其实它相当于:

mAtomicInteger.addAndGet(1);

其它具体用法请自行搜索,这里不再赘述。

到此为止,我们的优先级别的队列就实现完毕了,我们来做下测试:

public static void main(String... args) {
// 开一个窗口,这样会让优先级更加明显。
TaskQueue taskQueue = new TaskQueue(1);
taskQueue.start(); // // 某机构开始工作。 // 为了显示出优先级效果,我们预添加3个在前面堵着,让后面的优先级效果更明显。
taskQueue.add(new PrintTask(110));
taskQueue.add(new PrintTask(112));
taskQueue.add(new PrintTask(122)); for (int i = 0; i < 10; i++) { // 从第0个人开始。
PrintTask task = new PrintTask(i);
if (1 == i) {
task.setPriority(Priority.LOW); // 让第2个进入的人最后办事。
} else if (8 == i) {
task.setPriority(Priority.HIGH); // 让第9个进入的人第二个办事。
} else if (9 == i) {
task.setPriority(Priority.Immediately); // 让第10个进入的人第一个办事。
}
// ... 其它进入的人,按照进入顺序办事。
taskQueue.add(task);
}

没错这就是我们看到的效果:

我的id是:9
我的id是:8
我的id是:110
我的id是:112
我的id是:122
我的id是:0
我的id是:2
我的id是:3
我的id是:4
我的id是:5
我的id是:6
我的id是:7
我的id是:1

  

Java的优先级任务队列的实践的更多相关文章

  1. [转载]Java 应用性能调优实践

    Java 应用性能调优实践 Java 应用性能优化是一个老生常谈的话题,笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层.数据库层.框架层.JVM 层.通过介绍 Java 性能诊断工具 ...

  2. paip.java gui swt/jface 最佳实践

    paip.java gui swt/jface 最佳实践 1. 工具:Eclipse +jigloo4 1 2. 安装插件: 1 1. IMPORT swt lib 2 2. 新建立窗体 2 3. 运 ...

  3. Java运算符优先级(转)

    转自:http://www.cnblogs.com/gw811/archive/2012/10/13/2722752.html Java运算符优先级 序列号 符号 名称 结合性(与操作数) 目数 说明 ...

  4. 【转】Java运算符优先级

    原文网址:http://www.cnblogs.com/gw811/archive/2012/10/13/2722752.html Java运算符优先级 序列号 符号 名称 结合性(与操作数) 目数 ...

  5. java多线程中最佳的实践方案是什么?

    java多线程中最佳的实践方案是什么? 给你的线程起个有意义的名字.这样可以方便找bug或追踪.OrderProcessor, QuoteProcessor or TradeProcessor 这种名 ...

  6. Java序列化与反序列化(实践)

    Java序列化与反序列化(实践) 基本概念:序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数据. 昨天在一本书上 ...

  7. paip.提升性能--多核编程中的java .net php c++最佳实践 v2.0 cah

    paip.提升性能--多核编程中的java .net php c++最佳实践  v2.0 cah 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax ...

  8. JAVA异常的最佳工程学实践探索

    此文已由作者占金武授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 先说明一下背景: 项目日志中的Exception会被哨兵统一监控并报警 比较多的项目基于dubbo在做服务化 ...

  9. atitit.Atitit. Gui控件and面板-----服务端控件 java struts的实现最佳实践

    atitit.Atitit.  Gui控件and面板-----服务端控件 java struts的实现最佳实践 1. 服务器控件的类别 1 1.1. 数据控件:该类控件可细分为两种类型:数据源控件和数 ...

随机推荐

  1. MngoDb MongoClientOptions 配置信息及常用配置信息

    MongoClientOptions.Builder addClusterListener(ClusterListener clusterListener)Adds the given cluster ...

  2. 将本地代码上传到github走过的坑

    1.因为github是服务端,需要自己在自己的电脑上安装一个客户端git 2.配置SSH(配置一次就好了) github是不能随便上传代码上去的,而是通过一种网络协议---SSH授权的.SSH是一种网 ...

  3. NodeJS学习笔记 - Apache反向代理集成实现

    初学,简单的实现,为进行优化. 1. 假设NodeJS服务端监听3000端口 2. Apache反向代理设置 a. 在httpd.conf配置文件中开启代理模块 LoadModule proxy_mo ...

  4. Java后端工程师必备书单(含大后端方向相关书籍)

    学习Java和其他技术的资源其实非常多,但是我们需要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学习资源清单. 一: ...

  5. EntityFramework中对象的状态管理(笔记)

    刚开始接触EF框架的时候总是不明白: 为什么查询出来的对象 Remove().再 SaveChanges()就会把数据删除.而自己 new 一个Person()对象,然后 Remove()不行? 为什 ...

  6. 【转载】浅谈38K红外发射接受编码

    转自Doctor_A 坛友的笔记! 之前做接触过一次红外遥控器,现在有空想用简单的话来聊一聊,下面有错误的地方欢迎改正指出: 1:红外的概念不聊,那是一种物理存在.以下聊38K红外发射接收,主要讲可编 ...

  7. 项目实战3—实现基于Keepalived+LVS的高可用集群网站架构

    实现基于Keepalived高可用集群网站架构 环境:随着业务的发展,网站的访问量越来越大,网站访问量已经从原来的1000QPS,变为3000QPS,目前业务已经通过集群LVS架构可做到随时拓展,后端 ...

  8. MySQL高可用之组复制(4):详细分析组复制理论

    MySQL组复制系列文章: MySQL组复制大纲 MySQL组复制(1):组复制技术简介 MySQL组复制(2):配置单主模型的组复制 MySQL组复制(3):配置多主模型的组复制 MySQL组复制( ...

  9. 基于SpringMVC+Spring+MyBatis实现秒杀系统【概况】

    前言 本教程使用SpringMVC+Spring+MyBatis+MySQL实现一个秒杀系统.教程素材来自慕课网视频教程[https://www.imooc.com/learn/631].有感兴趣的可 ...

  10. iOS网络请求-AFNetworking源码解析

    趁着端午节日,自己没有什么过多的安排,准备花4-5天左右,针对网络请求源码AFNetworking和YTKNetwork进行解析以及这两年多iOS实际开发经验(其实YTKNetwork也是对AFNet ...