大叔学ML第四:线性回归正则化
正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则;正规;常规;正宗等。出自《楚辞·离骚》、《插图本中国文学史》、《东京赋》等文献。 —— 百度百科
基本形式
线性回归模型常常会出现过拟合的情况,由于训练集噪音的干扰,训练出来的模型抖动很大,不够平滑,导致泛化能力差,如下所示:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
def poly4(X, *theta):
return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4
''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]
''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))
theta = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix)), featrues_matrix.T), np.array(Y).T))
Ycalculated = poly4(X, *theta)
plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Ycalculated, color='r')
plt.show()
运行结果:
上面的代码中,大叔试图用多项式\(\theta_0 + \theta_1x + \theta_2x^2 + \theta_3x^3 + \theta_4x^4\)拟合给出的9个样本(如对以上代码有疑问,可参见大叔学ML第三:多项式回归),用正规方程计算出\(\vec\theta\),并绘图发现:模型产生了过拟合的情况。解决线性回归过拟合的一个方案是给代价函数添加正则化项。代价函数(参见大叔学ML第二:线性回归)形如:
\]
添加正则化后的代价函数形如:
## 梯度下降法中应用正则化项
对(2)式中的$\vec\theta$求偏导:
- $\frac{\partial}{\partial\theta_0}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)} - y^{(k)})x_0^{(k)} + \lambda\theta_0\right]$
- $\frac{\partial}{\partial\theta_1}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_1^{(k)} + \lambda\theta_1\right]$
- $\dots$
- $\frac{\partial}{\partial\theta_n}j(\theta_0,\theta_1\dots \theta_n) = \frac{1}{m}\left[\sum_{k=1}^m(\theta_0x_0^{(k)} + \theta_1x_1^{(k)} + \dots+ \theta_nx_n^{(k)}- y^{(k)})x_n^{(k)} + \lambda\theta_n\right]$
有了偏导公式后修改原来的代码(参见[大叔学ML第二:线性回归][4])即可,不再赘述。
## 正规方程中应用正则化项
用向量的形式表示代价函数如下:
$$J(\vec\theta)=\frac{1}{2m}||X\vec\theta - \vec{y}||^2 \tag{3}\]
观察(2)式,添加了正则化项的向量表示形式如下:
\]
变形:
J(\vec\theta)&=\frac{1}{2m}\left[||X\vec\theta - \vec{y}||^2 + ||\vec\theta||^2\right] \\
&=\frac{1}{2m}\left[(X\vec\theta - \vec{y})^T(X\vec\theta - \vec{y}) + \lambda\vec\theta^T\vec\theta \right]\\
&=\frac{1}{2m}\left[(\vec\theta^TX^T - \vec{y}^T)(X\vec\theta - \vec{y}) + \lambda\vec\theta^T\vec\theta\right] \\
&=\frac{1}{2m}\left[(\vec\theta^TX^TX\vec\theta - \vec\theta^TX^T\vec{y}- \vec{y}^TX\vec\theta + \vec{y}^T\vec{y}) + \lambda\vec\theta^T\vec\theta\right]\\
&=\frac{1}{2m}(\vec\theta^TX^TX\vec\theta - 2\vec{y}^TX\vec\theta + \vec{y}^T\vec{y} + \lambda\vec\theta^T\vec\theta)\\
\end{align}\]
对\(\vec\theta\)求导:
\frac{d}{d\vec\theta}J(\vec\theta)&=\frac{1}{m}(X^TX\vec\theta-X^T\vec{y} + \lambda I\vec\theta) \\
\frac{d}{d\vec\theta}J(\vec\theta)&=\frac{1}{m}\left[(X^TX + \lambda I)\vec\theta-X^T\vec{y}\right]
\end{align}\]
令其等于0,得:$$\vec\theta=(X^TX + \lambda I){-1}XT\vec{y}\tag{5}$$
小试牛刀
对本文开头所给出的代码进行修改,加入正则化项看看效果:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
def poly4(X, *theta):
return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4
''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]
''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))
ReM = np.eye(5) #正则化矩阵
ReM[0, 0] = 0
theta1 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 0 * ReM), featrues_matrix.T), np.array(Y).T))
Y1 = poly4(X, *theta1)
theta2 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 1 * ReM), featrues_matrix.T), np.array(Y).T))
Y2 = poly4(X, *theta2)
theta3 = tuple(np.dot(np.dot(np.linalg.pinv(np.dot(featrues_matrix.T, featrues_matrix) + 10000 * ReM), featrues_matrix.T), np.array(Y).T))
Y3 = poly4(X, *theta3)
plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Y1, color='r')
plt.plot(X, Y2, color='y')
plt.plot(X, Y3, color='b')
plt.show()
运行结果:
上图中,红线是没有加正则化项拟合出来的多项式曲线,黄线是加了\(\lambda\)取1的正则化项后拟合出来的曲线,蓝线是加了\(\lambda\)取10000的正则化项拟合出来的曲线。可见,加了正则化项后,模型的抖动变小了,曲线变得更加平滑。
调用类库
sklean
中已经为我们写好了加正则化项的线性回归方法,修改上面的代码:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
def poly4(X, *theta):
return theta[0] + theta[1] * X + theta[2] * X**2 + theta[3] * X**3 + theta[4] * X**4
''' 创建样本数据 '''
X = np.arange(0, 9, 1)
Y = [-10, 1, 10, 19, 10, 10, 46, 49, 50]
''' 用4次多项式拟合 '''
pf = PolynomialFeatures(degree=4)
featrues_matrix = pf.fit_transform(X.reshape(9, 1))
ridge_reg = Ridge(alpha=100)
ridge_reg.fit(featrues_matrix, np.array(Y).reshape((9, 1)))
theta = tuple(ridge_reg.intercept_.tolist() + ridge_reg.coef_[0].tolist())
Y1 = poly4(X, *theta)
plt.scatter(X, Y, marker='x', color='k')
plt.plot(X, Y1, color='r')
plt.show()
运行结果:
哇,调库和自己写代码搞出的模型差距居然这么大。看来水很深啊,大叔低估了ML的难度,路漫漫其修远兮......将来如果有机会需要阅读一下这些库的源码。大叔猜测是和样本数量可能有关系,大叔的样本太少,自己瞎上的。园子里高人敬请在评论区指教哦。
扩展
正则化项不仅如本文一种添加方式,本文所用的加\(\lambda||\vec\theta||^2\)的方式被称为“岭回归”,据说是因为给矩阵\(X^TX\)加了一个对角矩阵,此对角矩阵的主元看起来就像一道分水岭,所以叫“岭回归”。代码中用的sklean
中的模块名字就是Ridge
,也是分水岭的意思。
除了岭回归,还有“Lasso回归”,这个回归算法所用的正则化项是\(\lambda||\vec\theta||\),岭回归的特点是缩小样本属性对应的各项\(\theta\),而Lasso回归的特点是使某些不打紧的属性对应的\(\theta\)为0,即:忽略掉了某些属性。还有一种回归方式叫做“弹性网络”,是一种对岭回归和Lasso回归的综合应用。大叔在以后的日子研究好了还会专门再写一篇博文记录。
通过这几天的研究,大叔发现其实ML中最重要的部分就是线性回归,连高大上的深度学习也是对线性回归的扩展,如果对线性回归有了透彻的了解,定能在ML的路上事半功倍,一往无前。祝大家圣诞快乐!
大叔学ML第四:线性回归正则化的更多相关文章
- 大叔学ML第二:线性回归
目录 基本形式 求解参数\(\vec\theta\) 梯度下降法 正规方程导法 调用函数库 基本形式 线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下: 设有样本\(X\)形如: \[\beg ...
- 大叔学ML第五:逻辑回归
目录 基本形式 代价函数 用梯度下降法求\(\vec\theta\) 扩展 基本形式 逻辑回归是最常用的分类模型,在线性回归基础之上扩展而来,是一种广义线性回归.下面举例说明什么是逻辑回归:假设我们有 ...
- 大叔学ML第三:多项式回归
目录 基本形式 小试牛刀 再试牛刀 调用类库 基本形式 上文中,大叔说道了线性回归,线性回归是个非常直观又简单的模型,但是很多时候,数据的分布并不是线性的,如: 如果我们想用高次多项式拟合上面的数据应 ...
- 大叔学ML第一:梯度下降
目录 原理 实践一:求\(y = x^2 - 4x + 1\)的最小值 实践二:求\(z = x^2 + y^2 + 5\)的最小值 问答时间 原理 梯度下降是一个很常见的通过迭代求解函数极值的方法, ...
- [老老实实学WCF] 第四篇 初探通信--ChannelFactory
老老实实学WCF 第四篇 初探通信--ChannelFactory 通过前几篇的学习,我们简单了解了WCF的服务端-客户端模型,可以建立一个简单的WCF通信程序,并且可以把我们的服务寄宿在IIS中了. ...
- 一步一步学ZedBoard & Zynq(四):基于AXI Lite 总线的从设备IP设计
本帖最后由 xinxincaijq 于 2013-1-9 10:27 编辑 一步一步学ZedBoard & Zynq(四):基于AXI Lite 总线的从设备IP设计 转自博客:http:// ...
- 从零开始学Xamarin.Forms(四) Android 准备步骤(添加第三方Xamarin.Forms.Labs库)
原文:从零开始学Xamarin.Forms(四) Android 准备步骤(添加第三方Xamarin.Forms.Labs库) 1.安装对应dll Update-Package Xama ...
- (素材源代码)猫猫学IOS(四)UI之半小时搞定Tom猫
下载地址:http://download.csdn.net/detail/u013357243/8514915 以下是执行图片展示 制作思路以及代码解析 猫猫学IOS(四)UI之半小时搞定Tom猫这里 ...
- HDU 6467 简单数学题 【递推公式 && O(1)优化乘法】(广东工业大学第十四届程序设计竞赛)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6467 简单数学题 Time Limit: 4000/2000 MS (Java/Others) M ...
随机推荐
- 12条MySQL优化技巧
应用程序慢,原因多多,可能是网络的原因.可能是系统架构的原因,还有可能是数据库的原因. 有人会说性能调优是数据库管理员(DBA)的事,然而性能调优跟程序员们也有莫大的关系. 程序中嵌入的一行行的SQL ...
- opencv关于Mat类中的Scalar()---颜色赋值
这个 CvScalar就是一个可以用来存放4个double数值的数组(O'Reilly的书上写的是4个整型成员):一般用来存放像素值(不一定是灰度值哦)的,最多可以存放4个通道的. typedef s ...
- Solidity-让合约地址 接受ETH的转账充值的 三种方式
以太坊智能合约开发:让合约接受转账 在以太坊智能合约开发中,通常会有向合约地址进行转账的需求,那么有几种向合约地址进行转账的方式呢? 有三种方式: 部署合约时转账 调用合约提供的方法 直接向合约地址进 ...
- 解决InetAddress.isReachable(timeout)在windows xp始终返回false的bug
笔者最近在做产品,其中一个环节用到ping测试主机是否在线. 开发环境:Windows 7 64bit+JDK1.8 x64 以下是检测主机是否在线,开发环境中测试通过 public static b ...
- go语言学习逻辑运算符if判断,iota的理解
第一天学习go语言,首先吐槽一下,配置go语言浪费了我两个小时的时间 不是在百度,就是在百度的路上,这里介绍一下我的go语言的版本和开发平台 go语言1.12版本,之前没有用过在早的版本了首先记录一下 ...
- Docker: 创建带数据的MySql container
如果需要想要在一个装有docker的机器上启动一个MySql的container,并且整个MySql container有我想要的数据: 1. 先在已有的MySql instance上准备好数据 2. ...
- select2插件用法
1.修改默认查询方法,使其可以根据value查询 this.element.select2({ allowClear: true, matcher: function (term, text, ele ...
- day 8:open文件和with的使用
本节内容: 1,open打开文件后的几种操作 2,with和open的连用 3,flush的使用 1:open 1)r权限 f = open("D:\\auto\project\\fulls ...
- 腾讯开源的 Paxos库 PhxPaxos 代码解读---Accept阶段(一)
腾讯开源的 Paxos库 PhxPaxos 代码解读---Accept阶段(一) 在看Accept阶段代码之前, 我们再回想一下 Basic Paxos算法; 1. Basic Paxos 算法是为 ...
- idea出现找不到实体类
今天经理遇到一个很奇怪的问题: 在使用idea时,就是包真实存在,但是包中的实体类却无法智能提示,也无法导入成功: 我推荐的解决办法是重新导入,但是没有用,经理在网上找了很多解决方式,依然无效: 最后 ...