Recurrent Neural Network[Content]
1. RNN
图1.1 标准RNN模型的结构
2. BiRNN
3. LSTM
图3.1 LSTM模型的结构
4. Clockwork RNN
5. Depth Gated RNN
6. Grid LSTM
7. DRAW
8. RLVM
9. GRU
图9.1 GRU模型的结构
10. NTM
11. QRNN
图11.1 f-pooling时候的QRNN结构图
图11.2 fo-pooling时候的QRNN结构图
图11.3 ifo-pooling时候的QRNN结构图
点这里,QRNN
12. Persistent RNN
13. SRU
图13.1 SRU模型的结构
点这里,SRU
参考文献:
- [RNN&Depth] - Pascanu R, Gulcehre C, Cho K, et al. How to construct deep recurrent neural networks[J]. arXiv preprint arXiv:1312.6026, 2013.
- [survey] - Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. arXiv preprint arXiv:1506.00019, 2015.
.. [survey] - Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015: 2342-2350.
.. [survey] - Greff K, Srivastava R K, Koutník J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2017.
.. [survey] - Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks[J]. arXiv preprint arXiv:1506.02078, 2015. - [RNN] - Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211.
- [BiRNN] - Schuster, Mike, and Kuldip K. Paliwal. “Bidirectional recurrent neural networks.” IEEE Transactions on Signal Processing 45.11 (1997): 2673-2681.
- [LSTM] - Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780
.. [LSTM] - 理解 LSTM 网络
.. [LSTM Variants] - Gers F A, Schmidhuber J. Recurrent nets that time and count[C]//Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. IEEE, 2000, 3: 189-194. - [Multi-dimensional RNN] - Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber, Multi-Dimensional Recurrent Neural Networks, ICANN 2007
- [GFRNN] - Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio, Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015
- [Tree-Structured RNNs] - Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, arXiv:1503.00075 / ACL 2015
.. [Tree-Structured RNNs] - Samuel R. Bowman, Christopher D. Manning, and Christopher Potts, Tree-structured composition in neural networks without tree-structured architectures, arXiv:1506.04834 - [Clockwork RNN] - Koutník J, Greff K, Gomez F, et al. A Clockwork RNN[J]. arXiv preprint arXiv:1402.3511, 2014.
- [Depth Gated RNN] - Yao K, Cohn T, Vylomova K, et al. Depth-gated recurrent neural networks[J]. arXiv preprint, 2015.
- [Grid LSTM] - Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory[J]. arXiv preprint arXiv:1507.01526, 2015.
- [Segmental RNN] - Lingpeng Kong, Chris Dyer, Noah Smith, "Segmental Recurrent Neural Networks", ICLR 2016.
- [Seq2seq for Sets ] - Oriol Vinyals, Samy Bengio, Manjunath Kudlur, "Order Matters: Sequence to sequence for sets", ICLR 2016.
- [Hierarchical Recurrent Neural Networks] - Junyoung Chung, Sungjin Ahn, Yoshua Bengio, "Hierarchical Multiscale Recurrent Neural Networks", arXiv:1609.01704
- [DRAW] - Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.
- [RLVM] - Chung J, Kastner K, Dinh L, et al. A recurrent latent variable model for sequential data[C]//Advances in neural information processing systems. 2015: 2980-2988.
- [Generate] - Bayer J, Osendorfer C. Learning stochastic recurrent networks[J]. arXiv preprint arXiv:1411.7610, 2014.
- [GRU] - Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
.. [GRU] - Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:1409.1259, 2014.
.. [GRU] - Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014). - [NTM] - Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).
- [Neural GPU] - Łukasz Kaiser, Ilya Sutskever, arXiv:1511.08228 / ICML 2016 (under review)
- [QRNN] - Bradbury J, Merity S, Xiong C, et al. Quasi-recurrent neural networks[J]. arXiv preprint arXiv:1611.01576, 2016.
- [Memory Network] - Jason Weston, Sumit Chopra, Antoine Bordes, Memory Networks, arXiv:1410.3916
- [Pointer Network] - Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, Pointer Networks, arXiv:1506.03134 / NIPS 2015
- [Deep Attention Recurrent Q-Network] - Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network , arXiv:1512.01693
- [Dynamic Memory Networks] - Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285
- [SRU] - Lei T, Zhang Y. Training RNNs as Fast as CNNs[J]. arXiv preprint arXiv:1709.02755, 2017.
- [知乎] - 如何评价新提出的RNN变种SRU
- [attention] - Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International Conference on Machine Learning. 2015: 2048-2057.
- [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent rnns: Stashing recurrent weights on-chip[C]//International Conference on Machine Learning. 2016: 2024-2033.
.. [Persistent RNN] - Diamos G, Sengupta S, Catanzaro B, et al. Persistent RNNs: Stashing Weights on Chip[J]. 2016. - [github] - Awesome Recurrent Neural Networks.
Recurrent Neural Network[Content]的更多相关文章
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- 循环神经网络(Recurrent Neural Network,RNN)
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- 【NLP】Recurrent Neural Network and Language Models
0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...
- 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...
随机推荐
- Android Studio调试时遇见Install Repository and sync project的问题
我们可以看到,报的错是“Failed to resolve: com.android.support:appcompat-v7:16.+”,也就是我们在build.gradle中最后一段中的compi ...
- 深圳市共创力咨询为某大型上市企业提供两天的UCD内训与辅导服务!
2017年5月23和24日两天,深圳市共创力咨询为国内某大型上市企业提供了为期两天的内训与辅导服务.本次执行培训与辅导任务的是UCD(基于用户体验的设计)资深顾问蔷薇女士.蔷薇老师分别从UCD理论.U ...
- codeforces 2A Winner (好好学习英语)
Winner 题目链接:http://codeforces.com/contest/2/problem/A ——每天在线,欢迎留言谈论. 题目大意: 最后结果的最高分 maxscore.在最后分数都为 ...
- 这几天上海移动网络可以直接打开 Google Play 了
这几天上海移动网络可以直接打开 Google Play (谷歌应用商店)了. 速度还不错.基本无延迟. 想当初,为了防止国内应用市场里的木马或恶意软件,想从 Google Play 应用市场下载,折腾 ...
- c# .Net随机生成字符串代码
/// <summary> /// 随机生成字符串 /// </summary> /// <param name="OperationType"> ...
- 在微信小程序中使用LeanCloud(一)
之前学习了微信小程序前端,使用到LeanCloud线上数据库 [传送门].作为一个前端开发人员,了解后端及数据库是学习工作的需要. LeanCloud直接登录,未注册直接创建账户.它是一款免费的线上数 ...
- 下载安装Emacs和基本配置--待更新中
Emacs下载地址 下载好后,解压到D:\Emacs,并设置环境变量D:\Emacs\bin 熟悉基本操作 光标的移动 文件的创建与打开
- c++文件的读写
c++文件的读写 1.文本方式的写文件 #include <iostream> #include <fstream> using namespace std; int main ...
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
- March 09th, 2018 Week 10th Friday
All good things must come to an end. 好景无常. Love is when the other person's happiness is more importa ...