谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用。本文将讲述进一步扩展其应用场景:首先是User-Item协同聚类,即spectral coclustering,之后再详述谱聚类的进一步优化。

1 Spectral Coclustering

1.1 协同聚类(Coclustering)

在数据分析中,聚类是最常见的一种方法,对于一般的聚类算法(kmeans, spectral clustering, gmm等等),聚类结果都类似图1所示,能挖掘出数据之间的类簇规律。

图1 聚类结果图

即使对于常见的数据User-Item评分矩阵(常见于各社交平台的数据之中,例如音乐网站的用户-歌曲评分矩阵,新闻网站的用户-新闻评分矩阵,电影网站的用户-电影评分矩阵等等),如表1所示。在聚类分析中,也常常将数据计算成User-User的相似度关系或Item-Item的相似度关系,计算方法诸如应用Jaccard距离,将User或Item分别当成Item或User的特征,再在此基础上计算欧氏距离、cos距离等等。

表1 User-Item评分矩阵

但是如果能聚类成如图2中的coclustering关系,将User和Item同时聚类,将使得数据结果更具意义,即在音乐网站中的用户和歌曲coclustering结果表明,某些用户大都喜欢某类歌曲,同时这类歌曲也大都只被这群用户喜欢着。这样,不管是用于何种场景(例如歌曲推荐),都将带来极大的益处。

图2 coclustering图

1.2 Spectral Coclustering

对于User-Item评分矩阵,这是一个典型的二部图(Bipartite Grap),Item-User矩阵A,假设A为N*M,即N个item和M个user,可展开成:

其中E为(M+N)*(M+N)的方阵,且对称。

对于A的二部图,只存在Item与User之间的邻接边,在Item(User)之间不存在邻接边。再用谱聚类原理——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远。这样的聚类结果将Cut尽量少的边,分割出User和Item的类,如果类记Ci(U,I)为第i个由特定的User和Item组成的类,由谱聚类原理,Cut掉的Ci边为中的User或Item与其它类Cj(j≠i)的边,且其满足某种最优Cut方法,简单地说,Cut掉的User到其它类Cj(j≠i)的Item的边,可理解为这些User与其它Item相似关系较小;同样Cut掉的Item到其它类Cj(j≠i)的User的边,可理解为这些Item与其它User相似关系较小。这正好满足coclusering的定义。

在谱聚类的基础上,再实现Spectral Coclustering,十分简单, 将E直接当成谱聚类的邻接矩阵即可,至于求Laplacian矩阵、求特征值、计算Kmeans,完成与谱聚类相同。

    PS:更多详情,请参见参考文献1。

2 谱聚类的半监督学习

假设有大量新闻需要聚类,但对于其中的部分新闻,编辑已经人工分类好了,例如(Ni1,Ni2, …, Nim),为分类好的第i类,那么对于人工分类好的数据,就相当于聚类中的先验知识(或正则)。

在聚类时,可相应在邻接矩阵E中增加类彼此间邻接边,并使得其邻接权重较大,这样生成的邻接矩阵为E’。这样,再对此邻接矩阵E’做谱聚类,聚类结果将在一定程度上维持人工分类的结果,并达到聚类的目的。

    PS:更多详情,请参见参考文献2,不过谱聚类的半监督学习,都有点扯。

参考文献:

1 Inderjit S. Dhillon. Co-clustering documents and words using Bipartite Spectral Graph Partitioning;

2 W Chen. Spectral clustering: A semi-supervised approach;

3 Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang. Parallel Spectral Clustering in Distributed Systems.

----

谱聚类算法(Spectral Clustering)优化与扩展的更多相关文章

  1. 谱聚类算法(Spectral Clustering)

        谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的 ...

  2. 谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...

  3. 谱聚类(Spectral clustering)(2):NCut

    作者:桂. 时间:2017-04-13  21:19:41 链接:http://www.cnblogs.com/xingshansi/p/6706400.html 声明:欢迎被转载,不过记得注明出处哦 ...

  4. 谱聚类(Spectral clustering)分析(1)

    作者:桂. 时间:2017-04-13  19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...

  5. 谱聚类(Spectral clustering)(1):RatioCut

    作者:桂. 时间:2017-04-13  19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...

  6. 谱聚类(Spectral Clustring)原理

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...

  7. 谱聚类算法—Matlab代码

    % ========================================================================= % 算 法 名 称: Spectral Clus ...

  8. Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)

    聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...

  9. 谱聚类算法及其代码(Spectral Clustering)

    https://blog.csdn.net/liu1194397014/article/details/52990015 https://blog.csdn.net/u011089523/articl ...

随机推荐

  1. Python爬虫之自制英汉字典

      最近在微信公众号中看到有人用Python做了一个爬虫,可以将输入的英语单词翻译成中文,或者把中文词语翻译成英语单词.笔者看到了,觉得还蛮有意思的,因此,决定自己也写一个玩玩~~   首先我们的爬虫 ...

  2. IIS Tomcat共享80端口

    为什么有这种需求, 原因是这样的, 公司有一个Java的web项目,在另一台服务器A上,最近老板一时兴起,想把他合并到这台稳定点的服务器B上,服务器B上使用IIS来寄宿asp.net 网站, 怎么办呢 ...

  3. [android] activity横竖屏切换的生命周期

    模拟器横竖屏切换,ctrl+f11 界面activity会销毁,重新打开创建 第一种做法: 定死就是横屏 在清单文件,<activity/>节点部分,添加属性,设置屏幕朝向 android ...

  4. 为链表数据结构实现iterator接口

    iterator作用 为所有的数据结构提供统一的访问方式. 接口对象 接口对象一共有3个方法,next()方法.return()方法.throw()方法. next() 必填 用于for..of迭代. ...

  5. vue2 兼容ie8

    推荐这个 https://cdn.jsdelivr.net/npm/ractive

  6. mac node版本管理

    (0)简说 目前有n和nvm这两个工具可以对Node进行升级,以下简单介绍一下二者的使用. (1)n 安装很简单: $ sudo npm install -g n 另一种获取源码的方法安装: $ gi ...

  7. elementUI vue table 操作选项中弹出框确定dialog

    1.html <el-table-column label="操作" width="150" fixed="right" align= ...

  8. phpcms有二级导航并且高亮效果代码

    <div class="collapse navbar-collapse" id="example-navbar-collapse"> <ul ...

  9. Vue项目用于Ios和Android端开发

    起因 前公司商城App项目使用的是H5开发,有微信公众号.Ios和Android三个版本,H5版本是自己写的一套框架,已经用了有些年头了,承载不下不断涌现出的新需求.而Ios和Android端通过we ...

  10. View体系之属性动画

    (内容省略了valueAnimator和PropertyValueHolder使用) 属性动画的使用的主要方式是AnimatorSet和ObjectAnimator配合使用.ObjectAnimato ...