正题

题目链接:https://www.luogu.com.cn/problem/P5180


题目大意

给出\(n\)个点的一张有向图,求每个点支配的点数量。

\(1\leq n\leq 2\times 10^5,1\leq m\leq 3\times 10^5\)


解题思路

首先定义半支配点\(semi_x\)表示对于点\(x\)寻找一个\(dfn\)序最小的点\(y\)满足存在一条\(y\)到\(x\)的路径去掉头尾之后所有点的\(dfn\)序都大于\(x\)的。

考虑怎么求每个点的半支配点,考虑两种情况对于一个能够直接到达\(x\)的点\(y\)

  1. \(dfn_y<dfn_x\):那么\(y\)可能是\(x\)的半支配点
  2. \(dfn_y>dfn_x\):那么设\(v\)表示\(y\)到\(dfs\)根节点的路径上的某个点\(u\)的\(dfn\)序最小的半支配点,那么\(v\)可能是\(u\)的半支配点

主要是第二种情况我们相当于要找一个在某个点到根节点路径上的点使得它的半支配点\(dfn\)序最小。

那么可以考虑倒序枚举,然后用带权并查集维护那个半支配点编号最小的。

之后就是半支配点有什么用,大概就是半支配点向点连边那么新的图支配关系不变。

所以一种暴力的做法就是直接跑\(DAG\)的支配树求法,但是有更快的。

考虑对于一个点\(x\)和它的半支配点\(y\),如果\(y\)到\(x\)的路径上我们找到一个半支配点\(dfn\)序最小的节点\(u\)且它的半支配点为\(v\)。

那么如果

  1. \(v=y\),那么证明整条路径上没有\(dfn\)序更小的半支配点,\(y\)就是\(x\)的支配点。
  2. \(d_u>d_y\),那么显然\(u\)有更小的支配点支配这套路径,所以\(u\)的支配点就是\(y\)的支配点

这个过程中\(u\)和\(v\)的维护和上面一样,所以可以一起求解。

但是我们可以暂时不知道\(u\)的支配点,所以可以先记录,最后在正序的记回去。

时间复杂度\(O(n\alpha(n))\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2100;
struct node{
int l,r;
}q[110000];
int n,m,k,t,ans,p[N],st[N][26],ss[N][26],nxt[N],f[N][N],pre[N][N];
char T[N],S[N];
bool cmp(node x,node y)
{return x.l<y.l;}
int main()
{
freopen("lcs.in","r",stdin);
freopen("lcs.out","w",stdout);
scanf("%s",T+1);m=strlen(T+1);
scanf("%s",S+1);n=strlen(S+1);
for(int i=1;i<=m;i++){
for(int j=0;j<26;j++)
st[i][j]=st[i-1][j]+(T[i]=='a'+j);
}
for(int i=1;i<=n;i++){
for(int j=0;j<26;j++)
ss[i][j]=ss[i-1][j]+(S[i]=='a'+j);
}
scanf("%d",&k);
for(int i=1;i<=k;i++)
scanf("%d%d",&q[i].l,&q[i].r),q[i].l++,q[i].r++;
sort(q+1,q+1+k,cmp);
int nowr=0,pr=0;
for(int i=1;i<=k;i++){
if(q[i].l>nowr){
nxt[pr]=nowr;
for(int j=nowr+1;j<q[i].l;j++)nxt[j]=j;
pr=q[i].l;nowr=q[i].r;
}
else nowr=max(q[i].r,nowr);
}
nxt[pr]=nowr;
for(int i=nowr+1;i<=n;i++)nxt[i]=i;
for(int i=1;i<=n;i++)
if(nxt[i])p[++t]=i;
for(int i=1;i<=m;i++)
for(int j=1;j<=t;j++){
int l=p[j],r=nxt[l],L=i;
for(int z=min(r-l,m-L);z>=0;z--){
bool flag=1;
for(int k=0;k<26;k++)
if(ss[r][k]-ss[l-1][k]<st[L+z][k]-st[L-1][k])
{flag=0;break;}
if(flag){pre[i][j]=z+1;break;}
}
}
for(int i=1;i<=m;i++)
for(int j=1;j<=t;j++){
int l=p[j],r=nxt[l],R=i;
if(pre[i][j]==r-l+1)continue;
for(int z=min(r-l,R-1)-1;z>=0;z--){
bool flag=1;
for(int k=0;k<26;k++)
if(ss[r][k]-ss[l-1][k]<st[R][k]-st[R-z-1][k])
{flag=0;break;}
if(flag){f[i+1][j+1]=z+1;ans=max(ans,z+1);break;}
}
}
for(int i=1;i<=m;i++)
for(int j=1;j<=t;j++){
int l=p[j],r=nxt[l];
if(pre[i][j]==r-l+1){
f[i+r-l+1][j+1]=max(f[i+r-l][j+1],f[i][j]+r-l+1);
ans=max(ans,f[i][j]+r-l+1);
}
ans=max(ans,f[i][j]+pre[i][j]);
}
printf("%d\n",ans);
return 0;
}

P5180-[模板]支配树的更多相关文章

  1. [HDU]4694 Important Sisters(支配树)

    支配树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  2. P3384 【模板】树链剖分

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

  3. 洛谷P3368 【模板】树状数组 2

    P3368 [模板]树状数组 2 102通过 206提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 如题,已知一个数列,你需要进行下面两 ...

  4. 洛谷P3374 【模板】树状数组 1

    P3374 [模板]树状数组 1 140通过 232提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 题目描述有误 题目描述 如题,已知一个数列,你需要进行下面两 ...

  5. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  6. 康复计划#4 快速构造支配树的Lengauer-Tarjan算法

    本篇口胡写给我自己这样的老是证错东西的口胡选手 以及那些想学支配树,又不想啃论文原文的人- 大概会讲的东西是求支配树时需要用到的一些性质,以及构造支配树的算法实现- 最后讲一下把只有路径压缩的并查集卡 ...

  7. luogu3384 【模板】树链剖分

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

  8. luogu2597-[ZJOI2012]灾难 && DAG支配树

    Description P2597 [ZJOI2012]灾难 - 洛谷 | 计算机科学教育新生态 Solution 根据题意建图, 新建一个 \(S\) 点, 连向每个没有入边的点. 定义每个点 \( ...

  9. HDU.4694.Important Sisters(支配树)

    HDU \(Description\) 给定一张简单有向图,起点为\(n\).对每个点求其支配点的编号和. \(n\leq 50000\). \(Solution\) 支配树. 还是有点小懵逼. 不管 ...

随机推荐

  1. 微信小程序自定义顶部

    wxml <view style="height:{{titleHeight}}px;background:{{background}}" class="user- ...

  2. C#协作试取消线程

    https://segmentfault.com/q/1010000017109927using System; using System.Collections.Generic; using Sys ...

  3. 【C#】 Stopwatch详解

    Stopwatch的命名空间是using System.Diagnostics; 1 namespace System.Diagnostics 2 { 3 // 4 // 摘要: 5 // 提供一组方 ...

  4. jQuery中的层级选择器(四、二):后代元素、子元素、相邻元素、兄弟元素

    <!DOCTYPE html> <html> <head> <title>层次选择器</title> <meta http-equiv ...

  5. 单片机学习(九)定时器扫描按钮和数码管与PWM的使用

    目录 一.使用定时器扫描按钮和数码管 1. 使用定时器进行扫描的缘由 2. 定时器扫描独立按钮 3. 定时器扫描数码管 二.PWM的使用 1. PWM简介 2. LED呼吸灯 实现一 实现二 3. 按 ...

  6. ASP.NET真分页_接前篇引用AspNetPager.dll进行数据分页

    一.前端准备工作 1.之前我写到过<Asp.net中引用AspNetPager.dll进行数据分页>  这种分页方式只能在前台将数据分页,而每次点击查询时对目标数据库还是全查询,这样不仅会 ...

  7. C# 实现图片上传

    C# 实现图片上传 C#实现图片上传: 通过页面form表单提交数据到动作方法,动作方法实现保存图片到指定路径,并修改其文件名为时间格式 页面设置 这里使用的模板MVC自带的模板视图 <h2&g ...

  8. 【算法】使用Golang实现加权负载均衡算法

    背景描述 如下图所示,负载均衡做为反向代理,将请求方的请求转发至后端的服务节点,实现服务的请求. 在nginx中可以通过upstream配置server时,设置weight表示对应server的权重. ...

  9. Junit5快速入门指南-4

    Junit5套件测试 @RunWith(JUnitPlatform.class) 执行套件 @SelectPackages({"packageA","packageB&q ...

  10. element后端管理布局

    <template> <el-container> <el-header> <Header></Header> <span class ...