鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 百篇博客分析OpenHarmony源码 | v23.02

百篇博客系列篇.本篇为:
硬件架构相关篇为:
- v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班 | 51.c.h .o
- v23.xx 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 51.c.h .o
- v36.xx 鸿蒙内核源码分析(工作模式篇) | CPU是韦小宝,七个老婆 | 51.c.h .o
- v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 51.c.h .o
- v39.xx 鸿蒙内核源码分析(异常接管篇) | 社会很单纯,复杂的是人 | 51.c.h .o
- v40.xx 鸿蒙内核源码分析(汇编汇总篇) | 汇编可爱如邻家女孩 | 51.c.h .o
- v42.xx 鸿蒙内核源码分析(中断切换篇) | 系统因中断活力四射 | 51.c.h .o
- v43.xx 鸿蒙内核源码分析(中断概念篇) | 海公公的日常工作 | 51.c.h .o
- v44.xx 鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断 | 51.c.h .o

汇编如何传复杂的参数?
- v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o
汇编基础篇中很详细的介绍了一段具有代表性很经典的汇编代码,有循环,有判断,有运算,有多级函数调用。但有一个问题没有涉及,就是很复杂的参数如何处理?
在实际开发过程中函数参数往往是很复杂的参数,(比如结构体)汇编怎么传递呢?
先看一段C语言及汇编代码,传递一个稍微复杂的参数来说明汇编传参的过程
#include <stdio.h>
#include <math.h>
struct reg{//参数远超寄存器数量
int Rn[100];
int pc;
};
int framePoint(reg cpu)
{
return cpu.Rn[0] * cpu.pc;
}
int main()
{
reg cpu;
cpu.Rn[0] = 1;
cpu.pc = 2;
return framePoint(cpu);
}
//编译器: armv7-a gcc (9.2.1)
framePoint(reg):
sub sp, sp, #16 @申请栈空间
str fp, [sp, #-4]! @保护main函数栈帧,等同于push {fp}
add fp, sp, #0 @fp变成framePoint栈帧,同时也指向了栈顶
add ip, fp, #4 @定位到入栈口,让4个参数依次入栈
stm ip, {r0, r1, r2, r3}@r0-r3入栈保存
ldr r3, [fp, #4] @取值cpu.pc = 2
ldr r2, [fp, #404] @取值cpu.Rn[0] = 1
mul r3, r2, r3 @cpu.Rn[0] * cpu.pc
mov r0, r3 @返回值由r0保存
add sp, fp, #0 @重置sp,和add fp, sp, #0配套出现
ldr fp, [sp], #4 @恢复main函数栈帧
add sp, sp, #16 @归还栈空间,sp回落到main函数栈顶位置
bx lr @跳回main函数
main:
push {fp, lr} @入栈保存调用函数现场
add fp, sp, #4 @fp指向sp+4,即main栈帧的底部
sub sp, sp, #800 @分配800个线性地址,即main栈帧的顶部
mov r3, #1 @r3 = 1
str r3, [fp, #-408] @将1放置 fp-408处,即:cpu.Rn[0]处
mov r3, #2 @r3 = 2
str r3, [fp, #-8] @将2放置 fp-8处,即:cpu.pc
mov r0, sp @r0 = sp
sub r3, fp, #392 @r3 = fp - 392
mov r2, #388 @只拷贝388,剩下4个由寄存器传参
mov r1, r3 @保存由r1保存r3,用于memcpy
bl memcpy @拷贝结构体部分内容,将r1的内容拷贝r2的数量到r0
sub r3, fp, #408 @定位到结构体剩余未拷贝处
ldm r3, {r0, r1, r2, r3} @将剩余结构体内容通过寄存器传参
bl framePoint(reg) @执行framePoint
mov r3, r0 @返回值给r3
nop @用于程序指令的对齐
mov r0, r3 @再将返回值给r0
sub sp, fp, #4 @恢复SP值
pop {fp, lr} @出栈恢复调用函数现场
bx lr @跳回调用函数
两个函数对应两段汇编,干净利落,去除中间各项干扰,只有一个结构体reg,以下详细讲解如何传递它,以及它在栈中的数据变化是怎样的?
入参方式
结构体中共101个栈空间(一个栈空间单位四个字节),对应就是404个线性地址.
main上来就申请了 sub sp, sp, #800 @申请800个线性地址给main,即 200个栈空间
int main()
{
reg cpu;
cpu.Rn[0] = 1;
cpu.pc = 2;
return framePoint(cpu);
}
但main函数只有一个变量,只需101个栈空间,其他都算上也用不了200个.为什么要这么做呢?
而且注意下里面的数字 388, 408, 392 这些都是什么意思?
看完main汇编能得到一个结论是 200个栈空间中除了存放了main函数本身的变量外 ,还存放了要传递给framePoint函数的部分参数值,存放了多少个?答案是 388/4 = 97个. 注意变量没有共用,而是拷贝了一部份出来.如何拷贝的?继续看
memcpy汇编调用
mov r0, sp @r0 = sp
sub r3, fp, #392 @r3 = fp - 392
mov r2, #388 @只拷贝388,剩下4个由寄存器传参
mov r1, r3 @保存由r1保存r3,用于memcpy
bl memcpy @拷贝结构体部分内容,将r1的内容拷贝r2的数量到r0
sub r3, fp, #408 @定位到结构体剩余未拷贝处
ldm r3, {r0, r1, r2, r3} @将剩余结构体内容通过寄存器传参
看这段汇编拷贝,意思是从r1开始位置拷贝r2数量的数据到r0的位置,注意只拷贝了 388个,也就是 388/4 = 97个栈空间.剩余的4个通过寄存器传的参数.ldm代表从fp-408的位置将内存地址的值连续的给r0 - r3寄存器,即位置(fp-396,fp-400,fp-404,fp-408)的值.
执行下来的结果就是
r3 = fp-408, r2 = fp-404 ,r1 = fp-400 ,r0 = fp-396 得到虚拟地址的值,这些值整好是memcpy没有拷贝到变量剩余的值
逐句分析 framePoint
framePoint(reg):
sub sp, sp, #16 @申请栈空间
str fp, [sp, #-4]! @保护main函数栈帧,等同于push {fp}
add fp, sp, #0 @fp变成framePoint栈帧,同时也指向了栈顶
add ip, fp, #4 @定位到入栈口,让4个参数依次入栈
stm ip, {r0, r1, r2, r3}@r0-r3入栈保存
ldr r3, [fp, #4] @取值cpu.pc = 2
ldr r2, [fp, #404] @取值cpu.Rn[0] = 1
mul r3, r2, r3 @cpu.Rn[0] * cpu.pc
mov r0, r3 @返回值由r0保存
add sp, fp, #0 @重置sp,和add fp, sp, #0配套出现
ldr fp, [sp], #4 @恢复main函数栈帧
add sp, sp, #16 @归还栈空间,sp回落到main函数栈顶位置
bx lr @跳回main函数
framePoint申请了4个栈空间目的是用来存放四个寄存器值的,以上汇编代码逐句分析.
第一句: sub sp, sp, #16 @申请栈空间,用来存放r0-r3四个参数
第二句: str fp, [sp, #-4]! @保护main的fp,等同于push {fp},为什么这里要把main函数的fp放到 [sp, #-4]! 位置,注意 !号,表示SP的位置要变动,因为这里必须要保证参数的连续性.
第三句: add fp, sp, #0 @指定framePoint的栈帧位置,同时指向了栈顶 SP
第四句: add ip, fp, #4 @很关键,用了ip寄存器,因为此时 fp sp 都已经确定了,但别忘了 r0 - r3 还没有入栈呢.从哪个位置入栈呢, fp+4位置,因为 main函数的栈帧已经入栈了,在已经fp的位置.中间隔了四个空位,就是给 r0-r3留的.
第五句: stm ip, {r0, r1, r2, r3}@r0-r3入栈,填满了剩下的四个空位.
第六句: ldr r3, [fp, #4] @取的就是cpu.pc = 2的值,因为上一句就是从这里依次入栈的,最后一个当然就是cpu.pc了.
第七句: ldr r2, [fp, #404] @取值cpu.Rn[0] = 1,其实这一句已经是跳到了main函数的栈帧取值了,所以看明白了没有,并不是在传统意义上理解的在framePoint的栈帧中取值.
第八句: mul r3, r2, r3 @cpu.Rn[0] * cpu.pc 做乘法运算
第九句: mov r0, r3 @返回值r0保存运算结构, 目的是return
第十句: add sp, fp, #0 @重置sp,其实这一句可以优化掉,因为此时sp = fp
第十一句: ldr fp, [sp], #4 @恢复fp,等同于pop {fp},因为函数运行完了,需要回到main函数了,所以要拿到main的栈帧
第十二句: add sp, sp, #16 @归还栈空间,等于把四个入参抹掉了.
最后一句: bx lr @跳回main函数,如此 fp 和 lr 寄存器中保存的都是 main函数的信息,就可以安全着陆了.
总结
因为寄存器数量有限,所以只能通过这种方式来传递大的参数,想想也只能在main函数栈中保存大部分参数,同时又必须确保数据的连续性,好像也只能用这种办法了,一部分通过寄存器传,一部分通过拷贝的方式倒是挺有意思的.
鸿蒙内核源码分析.总目录
v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o
百万汉字注解.百篇博客分析
百万汉字注解 >> 精读鸿蒙源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee| github| csdn| coding >
百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< 51cto| csdn| harmony| osc >
关注不迷路.代码即人生

QQ群:790015635 | 入群密码: 666
原创不易,欢迎转载,但请注明出处.
鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 百篇博客分析OpenHarmony源码 | v23.02的更多相关文章
- 鸿蒙内核源码分析(汇编汇总篇) | 所有的汇编代码都在这里 | 百篇博客分析OpenHarmony源码 | v40.03
百篇博客系列篇.本篇为: v40.xx 鸿蒙内核源码分析(汇编汇总篇) | 汇编可爱如邻家女孩 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
- 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班? | 百篇博客分析OpenHarmony源码 | v22.01
百篇博客系列篇.本篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在 ...
- v87.01 鸿蒙内核源码分析 (内核启动篇) | 从汇编到 main () | 百篇博客分析 OpenHarmony 源码
本篇关键词:内核重定位.MMU.SVC栈.热启动.内核映射表 内核汇编相关篇为: v74.01 鸿蒙内核源码分析(编码方式) | 机器指令是如何编码的 v75.03 鸿蒙内核源码分析(汇编基础) | ...
- 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视GCC编译全过程 | 百篇博客分析OpenHarmony源码| v57.01
百篇博客系列篇.本篇为: v57.xx 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿蒙 ...
- 鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断 | 百篇博客分析OpenHarmony源码 | v44.02
百篇博客系列篇.本篇为: v44.xx 鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
- 鸿蒙内核源码分析(中断概念篇) | 海公公的日常工作 | 百篇博客分析OpenHarmony源码 | v43.02
百篇博客系列篇.本篇为: v43.xx 鸿蒙内核源码分析(中断概念篇) | 海公公的日常工作 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里 ...
- 鸿蒙内核源码分析(中断切换篇) | 系统因中断活力四射 | 百篇博客分析OpenHarmony源码 | v42.02
百篇博客系列篇.本篇为: v42.xx 鸿蒙内核源码分析(中断切换篇) | 系统因中断活力四射 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
- 鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析OpenHarmony源码 | v39.03
百篇博客系列篇.本篇为: v39.xx 鸿蒙内核源码分析(异常接管篇) | 社会很单纯,复杂的是人 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU ...
- 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 百篇博客分析OpenHarmony源码 | v38.02
百篇博客系列篇.本篇为: v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
随机推荐
- 题解 graph
传送门 一道做了巨久,不过确实很好的题 发现不定边权极难处理,所以就不会 感觉和这题有点像,但还是不会 但发现题面里有个地方很套路 要求有哪些点/边最终可以满足最短/最小,比如这样或这样的题,考虑凸包 ...
- Java Slf4j日志配置输出到文件中
1.概述 新项目需要增加日志需求,所以网上找了下日志配置,需求是将日志保存到指定文件中.网上找了下文章,发现没有特别完整的文章,下面自己整理下. 1.Java日志概述 对于一个应用程序来说日志记录是必 ...
- docker-compose部署mysql,redis,rabbitmq
version: '3' services: mysql: image: mysql:5.7.31 container_name: mysql restart: always command: --c ...
- ingress-nginx-controller 部署以及优化
一.说明 本文使用的ingress-nginx v1.0 最新版本,v1.0 适用于 Kubernetes 版本 >= v1.19 小于这个版本的k8s集群,请降级ingress-nginx. ...
- bootstrap 冻结表格,冻结表头
需要的文件下载: bootstrap-table:https://github.com/wenzhixin/bootstrap-table bootstrap-table-fiex-column:ht ...
- VS code快速创建vue模板
忘记了.vue文件的格式或者不想手动敲那段模板代码怎么办?VS code快速创建vue模板帮你偷个小懒 第一步:新建模板并保存 打开 VS code,依次点击 file > Preference ...
- 技术调研,IDEA 插件怎么开发「脚手架、低代码可视化编排、接口生成测试」?
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 不踩些坑,根本不是成熟的码农! 你觉得肯德基全家桶是什么?一家人一起吃的桶吗,就那么 ...
- springboot静态资源路径制定
spring.resources.static-location参数指定了Spring Boot-web项目中静态文件存放地址, 该参数默认设置为: classpath:/static, classp ...
- iGuard和NFS文件同步的解决方案
一般来说,从文件系统中获得文件变化信息,调用操作系统提供的 API 即可.Windows 操作系统上有个名为 ReadDirectoryChangesW 的 API 接口,只要监视一个目录路径就可以获 ...
- Asp.NetCore ResposeCache 缓存的使用
先小结一下: 缓存策略: [ResponseCache(CacheProfileName ="default30")] 直接使用缓存,30秒过期: [ResponseCache(D ...