百篇博客系列篇.本篇为:

硬件架构相关篇为:

汇编如何传复杂的参数?

  • v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o

    汇编基础篇中很详细的介绍了一段具有代表性很经典的汇编代码,有循环,有判断,有运算,有多级函数调用。但有一个问题没有涉及,就是很复杂的参数如何处理?

    在实际开发过程中函数参数往往是很复杂的参数,(比如结构体)汇编怎么传递呢?

    先看一段C语言及汇编代码,传递一个稍微复杂的参数来说明汇编传参的过程
#include <stdio.h>
#include <math.h>
struct reg{//参数远超寄存器数量
int Rn[100];
int pc;
}; int framePoint(reg cpu)
{
return cpu.Rn[0] * cpu.pc;
} int main()
{
reg cpu;
cpu.Rn[0] = 1;
cpu.pc = 2;
return framePoint(cpu);
}
//编译器: armv7-a gcc (9.2.1)
framePoint(reg):
sub sp, sp, #16 @申请栈空间
str fp, [sp, #-4]! @保护main函数栈帧,等同于push {fp}
add fp, sp, #0 @fp变成framePoint栈帧,同时也指向了栈顶
add ip, fp, #4 @定位到入栈口,让4个参数依次入栈
stm ip, {r0, r1, r2, r3}@r0-r3入栈保存
ldr r3, [fp, #4] @取值cpu.pc = 2
ldr r2, [fp, #404] @取值cpu.Rn[0] = 1
mul r3, r2, r3 @cpu.Rn[0] * cpu.pc
mov r0, r3 @返回值由r0保存
add sp, fp, #0 @重置sp,和add fp, sp, #0配套出现
ldr fp, [sp], #4 @恢复main函数栈帧
add sp, sp, #16 @归还栈空间,sp回落到main函数栈顶位置
bx lr @跳回main函数
main:
push {fp, lr} @入栈保存调用函数现场
add fp, sp, #4 @fp指向sp+4,即main栈帧的底部
sub sp, sp, #800 @分配800个线性地址,即main栈帧的顶部
mov r3, #1 @r3 = 1
str r3, [fp, #-408] @将1放置 fp-408处,即:cpu.Rn[0]处
mov r3, #2 @r3 = 2
str r3, [fp, #-8] @将2放置 fp-8处,即:cpu.pc
mov r0, sp @r0 = sp
sub r3, fp, #392 @r3 = fp - 392
mov r2, #388 @只拷贝388,剩下4个由寄存器传参
mov r1, r3 @保存由r1保存r3,用于memcpy
bl memcpy @拷贝结构体部分内容,将r1的内容拷贝r2的数量到r0
sub r3, fp, #408 @定位到结构体剩余未拷贝处
ldm r3, {r0, r1, r2, r3} @将剩余结构体内容通过寄存器传参
bl framePoint(reg) @执行framePoint
mov r3, r0 @返回值给r3
nop @用于程序指令的对齐
mov r0, r3 @再将返回值给r0
sub sp, fp, #4 @恢复SP值
pop {fp, lr} @出栈恢复调用函数现场
bx lr @跳回调用函数

两个函数对应两段汇编,干净利落,去除中间各项干扰,只有一个结构体reg,以下详细讲解如何传递它,以及它在栈中的数据变化是怎样的?

入参方式

结构体中共101个栈空间(一个栈空间单位四个字节),对应就是404个线性地址.

main上来就申请了 sub sp, sp, #800 @申请800个线性地址给main,即 200个栈空间

int main()
{
reg cpu;
cpu.Rn[0] = 1;
cpu.pc = 2;
return framePoint(cpu);
}

但main函数只有一个变量,只需101个栈空间,其他都算上也用不了200个.为什么要这么做呢?

而且注意下里面的数字 388, 408, 392 这些都是什么意思?

看完main汇编能得到一个结论是 200个栈空间中除了存放了main函数本身的变量外 ,还存放了要传递给framePoint函数的部分参数值,存放了多少个?答案是 388/4 = 97个. 注意变量没有共用,而是拷贝了一部份出来.如何拷贝的?继续看

memcpy汇编调用

        mov     r0, sp          @r0 = sp
sub r3, fp, #392 @r3 = fp - 392
mov r2, #388 @只拷贝388,剩下4个由寄存器传参
mov r1, r3 @保存由r1保存r3,用于memcpy
bl memcpy @拷贝结构体部分内容,将r1的内容拷贝r2的数量到r0
sub r3, fp, #408 @定位到结构体剩余未拷贝处
ldm r3, {r0, r1, r2, r3} @将剩余结构体内容通过寄存器传参

看这段汇编拷贝,意思是从r1开始位置拷贝r2数量的数据到r0的位置,注意只拷贝了 388个,也就是 388/4 = 97个栈空间.剩余的4个通过寄存器传的参数.ldm代表从fp-408的位置将内存地址的值连续的给r0 - r3寄存器,即位置(fp-396,fp-400,fp-404,fp-408)的值.

执行下来的结果就是

r3 = fp-408, r2 = fp-404 ,r1 = fp-400 ,r0 = fp-396 得到虚拟地址的值,这些值整好是memcpy没有拷贝到变量剩余的值

逐句分析 framePoint

framePoint(reg):
sub sp, sp, #16 @申请栈空间
str fp, [sp, #-4]! @保护main函数栈帧,等同于push {fp}
add fp, sp, #0 @fp变成framePoint栈帧,同时也指向了栈顶
add ip, fp, #4 @定位到入栈口,让4个参数依次入栈
stm ip, {r0, r1, r2, r3}@r0-r3入栈保存
ldr r3, [fp, #4] @取值cpu.pc = 2
ldr r2, [fp, #404] @取值cpu.Rn[0] = 1
mul r3, r2, r3 @cpu.Rn[0] * cpu.pc
mov r0, r3 @返回值由r0保存
add sp, fp, #0 @重置sp,和add fp, sp, #0配套出现
ldr fp, [sp], #4 @恢复main函数栈帧
add sp, sp, #16 @归还栈空间,sp回落到main函数栈顶位置
bx lr @跳回main函数
framePoint申请了4个栈空间目的是用来存放四个寄存器值的,以上汇编代码逐句分析.

第一句: sub     sp, sp, #16     @申请栈空间,用来存放r0-r3四个参数

第二句: str     fp, [sp, #-4]!  @保护main的fp,等同于push {fp},为什么这里要把main函数的fp放到 [sp, #-4]! 位置,注意 !号,表示SP的位置要变动,因为这里必须要保证参数的连续性.

第三句: add     fp, sp, #0      @指定framePoint的栈帧位置,同时指向了栈顶 SP

第四句: add     ip, fp, #4      @很关键,用了ip寄存器,因为此时 fp sp 都已经确定了,但别忘了 r0 - r3 还没有入栈呢.从哪个位置入栈呢, fp+4位置,因为 main函数的栈帧已经入栈了,在已经fp的位置.中间隔了四个空位,就是给 r0-r3留的.

第五句: stm     ip, {r0, r1, r2, r3}@r0-r3入栈,填满了剩下的四个空位.

第六句: ldr     r3, [fp, #4]    @取的就是cpu.pc = 2的值,因为上一句就是从这里依次入栈的,最后一个当然就是cpu.pc了.

第七句: ldr     r2, [fp, #404]  @取值cpu.Rn[0] = 1,其实这一句已经是跳到了main函数的栈帧取值了,所以看明白了没有,并不是在传统意义上理解的在framePoint的栈帧中取值.

第八句: mul     r3, r2, r3      @cpu.Rn[0] * cpu.pc 做乘法运算

第九句: mov     r0, r3          @返回值r0保存运算结构, 目的是return

第十句: add sp, fp, #0          @重置sp,其实这一句可以优化掉,因为此时sp = fp

第十一句: ldr     fp, [sp], #4  @恢复fp,等同于pop {fp},因为函数运行完了,需要回到main函数了,所以要拿到main的栈帧

第十二句: add     sp, sp, #16   @归还栈空间,等于把四个入参抹掉了.

最后一句: bx      lr            @跳回main函数,如此 fp 和 lr 寄存器中保存的都是 main函数的信息,就可以安全着陆了.

总结

因为寄存器数量有限,所以只能通过这种方式来传递大的参数,想想也只能在main函数栈中保存大部分参数,同时又必须确保数据的连续性,好像也只能用这种办法了,一部分通过寄存器传,一部分通过拷贝的方式倒是挺有意思的.

鸿蒙内核源码分析.总目录

v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o

百万汉字注解.百篇博客分析

百万汉字注解 >> 精读鸿蒙源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee| github| csdn| coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< 51cto| csdn| harmony| osc >

关注不迷路.代码即人生

QQ群:790015635 | 入群密码: 666

原创不易,欢迎转载,但请注明出处.

鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 百篇博客分析OpenHarmony源码 | v23.02的更多相关文章

  1. 鸿蒙内核源码分析(汇编汇总篇) | 所有的汇编代码都在这里 | 百篇博客分析OpenHarmony源码 | v40.03

    百篇博客系列篇.本篇为: v40.xx 鸿蒙内核源码分析(汇编汇总篇) | 汇编可爱如邻家女孩 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...

  2. 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班? | 百篇博客分析OpenHarmony源码 | v22.01

    百篇博客系列篇.本篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在 ...

  3. v87.01 鸿蒙内核源码分析 (内核启动篇) | 从汇编到 main () | 百篇博客分析 OpenHarmony 源码

    本篇关键词:内核重定位.MMU.SVC栈.热启动.内核映射表 内核汇编相关篇为: v74.01 鸿蒙内核源码分析(编码方式) | 机器指令是如何编码的 v75.03 鸿蒙内核源码分析(汇编基础) | ...

  4. 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视GCC编译全过程 | 百篇博客分析OpenHarmony源码| v57.01

    百篇博客系列篇.本篇为: v57.xx 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿蒙 ...

  5. 鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断 | 百篇博客分析OpenHarmony源码 | v44.02

    百篇博客系列篇.本篇为: v44.xx 鸿蒙内核源码分析(中断管理篇) | 江湖从此不再怕中断 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...

  6. 鸿蒙内核源码分析(中断概念篇) | 海公公的日常工作 | 百篇博客分析OpenHarmony源码 | v43.02

    百篇博客系列篇.本篇为: v43.xx 鸿蒙内核源码分析(中断概念篇) | 海公公的日常工作 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里 ...

  7. 鸿蒙内核源码分析(中断切换篇) | 系统因中断活力四射 | 百篇博客分析OpenHarmony源码 | v42.02

    百篇博客系列篇.本篇为: v42.xx 鸿蒙内核源码分析(中断切换篇) | 系统因中断活力四射 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...

  8. 鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析OpenHarmony源码 | v39.03

    百篇博客系列篇.本篇为: v39.xx 鸿蒙内核源码分析(异常接管篇) | 社会很单纯,复杂的是人 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU ...

  9. 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 百篇博客分析OpenHarmony源码 | v38.02

    百篇博客系列篇.本篇为: v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...

随机推荐

  1. 百度地图开发-引入地图SDK并配置 02

    百度地图开发-引入地图SDK并配置 02 通过上一篇文章的介绍,基本了解百度地图的基本信息,接下来就让我们一起来实际在项目中操作,显示出地图. 01 引入地图SDK 首先需要新建一个空白的Androi ...

  2. Rabbit-用户上线接收消息

    application-dev.yml spring: rabbitmq: username: admin password: admin host: 192.168.0.45 port: 5672 ...

  3. ThreadLocal 的应用

    ThreadLocal set() 的只能是当前线程能使用的值 public class TestTreadLocal{ public static final ThreadLocal threadS ...

  4. Asp.NetCore ResposeCache 缓存的使用

    先小结一下: 缓存策略: [ResponseCache(CacheProfileName ="default30")] 直接使用缓存,30秒过期: [ResponseCache(D ...

  5. 用C++实现的Euler筛法程序

    Euler筛法介绍 以筛出100以内(含100)的所有素数为例来说明一下欧拉筛法的原理. 和Eratosthenes筛法一样,Euler筛法也从2开始筛,但Eratosthenes筛法会把2的倍数一批 ...

  6. JDK和环境配置,eclipse安装与使用

    本博客部分参照https://blog.csdn.net/PGY0000/article/details/79256720 (记住要尊重别人的劳动产品) 原博客给的链接和后面的安装过程有点不一样,不能 ...

  7. Redis-技术专区-让你彻底会使用“Redis中最陌生且最强大的集合”(ZSET)【前篇】

    前言介绍 很多小伙伴都跟我说,redis中,ZSet(有序集合)是他们最陌生的集合,同时也是觉得特别复杂的集合之一,在开发过程中经常会用到它,而且也是大家最不太有把握使用的集合,所以笔者就从ZSet集 ...

  8. 剑指 Offer 34. 二叉树中和为某一值的路径

    剑指 Offer 34. 二叉树中和为某一值的路径 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径.从树的根节点开始往下一直到叶节点所经过的节点形成一条路径. 示例: 给定如下 ...

  9. Leetcode 146. LRU 缓存机制

    前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...

  10. python使用UTF-8写入CSV中文乱码

    使用encoding='utf-8',写入的文档是乱码. 解决办法: 修改encoding='utf-8-sig' 关于文件open()函数: open(path,'-模式-',encoding='u ...