P5110-块速递推【特征方程,分块】
正题
题目链接:https://www.luogu.com.cn/problem/P5110
题目大意
数列\(a\)满足
\]
\(T\)组询问给出\(n\)求\(a_n\)
\(1\leq T\leq 5\times 10^7\),\(n\)在\(\text{unsigned long long}\)范围内
解题思路
上面那个递推式的特征方程就是\(x^2-233x-666\),直接带式子解出来\(x_0=\frac{233+\sqrt{56953}}{2},x_1=\frac{233-\sqrt{56953}}{2}\)。
然后设\(a_n=c_0x_0^n+c_1x_1^n\),那么带入\(a_0\)和\(a_1\)就有
\]
解出来有\(c_0=\frac{1}{\sqrt{56953}},c_1=-\frac{1}{\sqrt{56953}}\)。
这样我们就可以\(O(T\log n)\)求答案了,但是还是不够。
先根据欧拉定理让\(n\)模上\(\varphi(P)\)缩小范围
然后分块处理快速幂,处理出\(x^i\)和\(x^{i\sqrt P}(i\in[0,\sqrt P])\),这个是\(O(\sqrt P)\)的,然后每次把\(n\)分为整块的成上末尾的就好了。
时间复杂度\(O(\sqrt P+T)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const ll P=1e9+7,Phi=P-1;
const ll sq=188305837,T=32000;
ll Q,n,p0[T+1],p1[T+1],P0[T+1],P1[T+1],ans;
ll pw0(ll x){return P0[x/T]*p0[x%T]%P;}
ll pw1(ll x){return P1[x/T]*p1[x%T]%P;}
namespace Mker
{
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC%Phi;
}
}
signed main()
{
ll inv2=(P+1)/2;
ll x0=(233+sq)*inv2%P,x1=(P+233-sq)*inv2%P;
p0[0]=p1[0]=P0[0]=P1[0]=1;
for(ll i=1;i<=T;i++)
p0[i]=p0[i-1]*x0%P,p1[i]=p1[i-1]*x1%P;
for(ll i=1;i<=T;i++)
P0[i]=P0[i-1]*p0[T]%P,P1[i]=P1[i-1]*p1[T]%P;
ll inv=233230706,c0=inv,c1=P-inv;
scanf("%lld",&Q);Mker::init();
while(Q--){
n=Mker::rand();
// scanf("%lld",&n);ans=0;
ans^=(c0*pw0(n)+c1*pw1(n))%P;
// printf("%lld\n",ans);
}
printf("%lld\n",ans);
}
P5110-块速递推【特征方程,分块】的更多相关文章
- P5110 块速递推-光速幂、斐波那契数列通项
P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- P5110 块速递推
传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...
- P5110 【块速递推】
太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...
- Luogu5110 块速递推
题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...
- 【洛谷 P5110】 块速递推(矩阵加速,分块打表)
题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...
- 【第53套模拟题】【递推】【RMQ】【二进制】【分块】
题目:(开始自己描述题目了...) 第一题大意: 求1~n的所有排列中逆序对为k个的方案数,输出方案数%10000,n<=1000. 解:这道题一个递推,因为我基本上没怎么自己做过递推,所以推了 ...
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
随机推荐
- C#高级应用之------HashTable、HashSet和Dictionary的区别(转)
原文url:http://www.cnblogs.com/akwwl/p/3680376.html 今天又去面试了,结果依然很悲催,平时太过于关注表面上的东西,有些实质却不太清楚,遇到HashTabl ...
- qt 中回调函数的实现
在QT中回调函数主要可以实现多态性,通过回调函数可以动态处理一些操作.在多线程中,当同时需要处理多个事务的时候,显然你会去创建多个线程类然后实例化,这显然会增加开发工作,当我们在线程类中加入一个回调函 ...
- Js/jquery常用
id属性不能有空格 1. js判断checkebox是否被选中 var ischecked = document.getElementById("xxx").checked // ...
- 数据库中sql分类
-- sql语句分类:-- 1)数据定义语句(DDL):-- create/alter/drop-- 2)数据操作语句(DML):-- insert ...
- Linux centos 安装 mysql 5.7
一.mysql下载 1.方式一(简单粗暴) 直接在linux 目录下:wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.25-l ...
- LeetCode入门指南 之 回溯思想
模板 result = {} void backtrack(选择列表, 路径) { if (满足结束条件) { result.add(路径) return } for 选择 in 选择列表 { 做选择 ...
- 恶意软件开发——shellcode执行的几种常见方式
一.什么是shellcode? shellcode是一小段代码,用于利用软件漏洞作为有效载荷.它之所以被称为"shellcode",是因为它通常启动一个命令shell,攻击者可以从 ...
- 三大操作系统对比使用之·MacOSX
时间:2018-11-13 整理:byzqy 本篇是一篇个人对Mac系统使用习惯和应用推荐的分享,在此记录,以便后续使用查询! 打开终端: command+空格,调出"聚焦搜索(Spotli ...
- OpenCV waitKey 无法正常捕捉方向键(上下左右),总结和解决方案,可以用waitKeyEx
在win10+python+opencv3.4.5,测试 while True: key = cv2.waitKey(0) print('key =', key) 依次按上.下.左.右方向键,输出: ...
- android http get
Executors.newSingleThreadExecutor().execute{ val uri = "https://www.cnblogs.com/hangj" val ...