正题

题目链接:https://www.luogu.com.cn/problem/P5110


题目大意

数列\(a\)满足

\[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1=1
\]

\(T\)组询问给出\(n\)求\(a_n\)

\(1\leq T\leq 5\times 10^7\),\(n\)在\(\text{unsigned long long}\)范围内


解题思路

上面那个递推式的特征方程就是\(x^2-233x-666\),直接带式子解出来\(x_0=\frac{233+\sqrt{56953}}{2},x_1=\frac{233-\sqrt{56953}}{2}\)。

然后设\(a_n=c_0x_0^n+c_1x_1^n\),那么带入\(a_0\)和\(a_1\)就有

\[\left\{\begin{matrix}c_0+c_1=0\\c_0\frac{233+\sqrt{56953}}{2}+c_1\frac{233-\sqrt{56953}}{2}=1\end{matrix}\right.
\]

解出来有\(c_0=\frac{1}{\sqrt{56953}},c_1=-\frac{1}{\sqrt{56953}}\)。

这样我们就可以\(O(T\log n)\)求答案了,但是还是不够。

先根据欧拉定理让\(n\)模上\(\varphi(P)\)缩小范围

然后分块处理快速幂,处理出\(x^i\)和\(x^{i\sqrt P}(i\in[0,\sqrt P])\),这个是\(O(\sqrt P)\)的,然后每次把\(n\)分为整块的成上末尾的就好了。

时间复杂度\(O(\sqrt P+T)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const ll P=1e9+7,Phi=P-1;
const ll sq=188305837,T=32000;
ll Q,n,p0[T+1],p1[T+1],P0[T+1],P1[T+1],ans;
ll pw0(ll x){return P0[x/T]*p0[x%T]%P;}
ll pw1(ll x){return P1[x/T]*p1[x%T]%P;}
namespace Mker
{
unsigned long long SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
unsigned long long rand()
{
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
unsigned long long t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC%Phi;
}
}
signed main()
{
ll inv2=(P+1)/2;
ll x0=(233+sq)*inv2%P,x1=(P+233-sq)*inv2%P;
p0[0]=p1[0]=P0[0]=P1[0]=1;
for(ll i=1;i<=T;i++)
p0[i]=p0[i-1]*x0%P,p1[i]=p1[i-1]*x1%P;
for(ll i=1;i<=T;i++)
P0[i]=P0[i-1]*p0[T]%P,P1[i]=P1[i-1]*p1[T]%P;
ll inv=233230706,c0=inv,c1=P-inv;
scanf("%lld",&Q);Mker::init();
while(Q--){
n=Mker::rand();
// scanf("%lld",&n);ans=0;
ans^=(c0*pw0(n)+c1*pw1(n))%P;
// printf("%lld\n",ans);
}
printf("%lld\n",ans);
}

P5110-块速递推【特征方程,分块】的更多相关文章

  1. P5110 块速递推-光速幂、斐波那契数列通项

    P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...

  2. 洛谷 P5110 块速递推

    题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...

  3. 洛谷P5110 块速递推 [分块]

    传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...

  4. P5110 块速递推

    传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...

  5. P5110 【块速递推】

    太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...

  6. Luogu5110 块速递推

    题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...

  7. 【洛谷 P5110】 块速递推(矩阵加速,分块打表)

    题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...

  8. 【第53套模拟题】【递推】【RMQ】【二进制】【分块】

    题目:(开始自己描述题目了...) 第一题大意: 求1~n的所有排列中逆序对为k个的方案数,输出方案数%10000,n<=1000. 解:这道题一个递推,因为我基本上没怎么自己做过递推,所以推了 ...

  9. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

随机推荐

  1. C#综合细说进程、应用程序域与上下文

    引言 本文主要是介绍进程(Process).应用程序域(AppDomain)..NET上下文(Context)的概念与操作. 虽然在一般的开发当中这三者并不常用,但熟悉三者的关系,深入了解其作用,对提 ...

  2. 微信小程序学习笔记三 路由的基本使用

    小程序中路由的使用 1.1 页面路由 在小程序中, 所有页面的路由全部由框架进行管理 1.2 页面栈 框架以栈的形式维护了当前的所有页面, 当发生路由切换的时候, 页面栈的表现如下: 1.3 获取当前 ...

  3. 分布式协调组件Zookeeper之 选举机制与ZAB协议

    Zookeeper简介: Zookeeper是什么: Zookeeper 是⼀个分布式协调服务的开源框架. 主要⽤来解决分布式集群中应⽤系统的⼀致性问题, 例如怎样避免同时操作同⼀数据造成脏读的问题. ...

  4. MySQL-表迁移工具的选型-xtrabackup的使用

    1.1. 场景 有的时候test人员可能需要在测试库上比较新的数据,这时候只能是从生产库上面去那了.如果是小表还好实用mysqldump/mysqlpump就可以轻松的解决.但是,如果遇到了大表这将是 ...

  5. configparser读

    #-*-coding:utf-8-*-__author__ = "logan.xu"import configparserconf = configparser.ConfigPar ...

  6. 百闻不如一试——公式图片转Latex代码

    写博客时,数学公式的编辑比较占用时间,在上一篇中详细介绍了如何在Markdown中编辑数学符号与公式. https://www.cnblogs.com/bytesfly/p/markdown-form ...

  7. python实现遥感图像阈值分割

    1.阈值分割 import os import cv2 import numpy as np import matplotlib.pyplot as plt from osgeo import gda ...

  8. Linux - 解决使用 apt-get 安装 yum 的时耗报 E: Unable to locate package yum 的错误

    问题背景 在 Linux 系统下使用 apt-get 命令安装 yum 库报错 apt-get install yum E: Unable to locate package yum 问题解决 一行命 ...

  9. Docker(36)- docker run 的流程和原理

    背景 目前项目组上, Docker 用的非常重,所有微服务都是通过 docker 来部署的 所以不能仅仅会命令,还得会一些原理的东西,特此补一篇基础点的,后面再更加深入一些 docker 原理 本篇学 ...

  10. JAVA安全基础之反射

    JAVA安全基础之反射 在JAVA安全中,反射是一个经常使用的技术,所以熟悉使用反射是非常必要的.下面就简单的讲下JAVA的反射的用法 什么是反射 每个类都有对应的Class类对象,该Class类对象 ...