目录

Hu H., Zhang Z., Xie Z., Lin S. Local relation networks for image recognition. In International Conference on Computer Vision (ICCV), 2019.

一种特殊的卷积?

主要内容

CNN通过许许多多的filters进行模式匹配(a pattern matching process), 非常低效, 本文提出利用局部相关性来替代这些卷积层.

  1. 输入特征图\(X \in \mathbb{R}^{C \times H \times W}\);

  2. 特征图通过1x1的卷积(channel transformation layer)分别获得key map, query map, 二者的大小均为\(C/m \times H \times W\);

  3. 对于query map上的每一个点\(q_{p'}\), 计算其与kxk邻域内的点\(k_p\)间的relation:

    \[w(p', p) = \mathrm{softmax}(\Phi(q_{p'}, k_p) + f_{\theta_g}(p - p')),
    \]

    其中

    \[\Phi(q_{p'}, k_p) = -(q_{p'}-k_q)^2,
    \]

    \(f_{\theta_g}(p-p')\)是通过两层1x1卷积获得的\(C/m \times k \times k\), 反映了Geometry Prior, 实际上就是相对距离的度量.

    注: 因为每个\(p\)都可以用\((h, w)\)来表示点的位置, 故途中的Position是两个通道的.

  4. 此时, 对于feature map中的任一点\(p\)都有了对应的\(w\), 通过此可以计算出一个对应的值, 于是可以得到\(C \times H \times W\)的新的特征图, 概特征图反应了点与其对应的kxk邻域内的点的相对关系. 需要注意的是, 图中是\(m \times C/m \times k \times k\)的形式呈现, 这是因为作者令每\(m\)个通道共享一个relation \(w\)(用于减少计算量), 等价于每个点会被作用\(C/ m\)个kernel, 故aggregation weights 是\(C/m\)个通道的.

  5. 最后, 再通过1x1的卷积将特征图转换为\(C'\times H \times W\)的输出, 图中应该是作者的笔误.

看起来整个网络的权重似乎很少啊, 都是1x1的卷积.

Local Relation Networks for Image Recognition的更多相关文章

  1. Paper Reading: Relation Networks for Object Detection

    Relation Networks for Object Detection笔记  写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...

  2. 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos

    Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...

  3. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  4. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  5. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  6. Spatial-Temporal Relation Networks for Multi-Object Tracking

    Spatial-Temporal Relation Networks for Multi-Object Tracking 2019-05-21 11:07:49 Paper: https://arxi ...

  7. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  8. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  9. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

随机推荐

  1. above, abrupt

    above 近义词: over, beyond, exceeding反义词: below, beneath, under, underneath 有从右往左写的文字,没有从下往上的.above-men ...

  2. 零基础学习java------day12------数组高级(选择排序,冒泡排序,二分查找),API(Arrays工具类,包装类,BigInteger等数据类型,Math包)

    0.数组高级 (1)选择排序 它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的起始位置 ...

  3. 【leetcode】653. Two Sum IV - Input is a BST

    Given the root of a Binary Search Tree and a target number k, return true if there exist two element ...

  4. JVM——垃圾收集算法及垃圾回收器

    一.垃圾回收算法 1.标记-清除算法 1)工作流程 算法分为"标记"和"清除"阶段:首先标记出所有需要回收的对象(标记阶段),在标记完成后统一回收所有被标记的对 ...

  5. xtrabackup原理

    常用命令 innobackupex --defaults-file=/data/mysql_3306/my.cnf --no-timestamp --slave-info --compress --c ...

  6. Linux环境下为普通用户添加sudo权限

    系统环境:Centos6.5 1.背景: sudo是Linux系统管理指令,是允许系统管理员让普通用户执行一些或者全部root命令的一个工具.Linux系统下,为了安全,一般来说我们操作都是在普通用户 ...

  7. Linux学习 - 文本编辑器Vim

    一.Vim工作模式 二.命令 插入 a 光标后插入 A 光标所在行尾插入 i 光标前插入 I 光标所在行首插入 o 光标下插入新行 O 光标上插入新行   删除 x 删除光标处字符 nx 删除光标处后 ...

  8. Spring Boot事务支持

    一.创建项目 二.添加依赖 <dependencies> <dependency> <groupId>org.projectlombok</groupId&g ...

  9. JQuery 和 CSS 等选择器:

    JQuery 选择器: CSS 选择器:

  10. 『学了就忘』Linux服务管理 — 79、源码包安装的服务管理

    目录 1.源码包服务的启动管理 2.源码包服务的自启动管理 3.让源码包服务被服务管理命令识别 1.源码包服务的启动管理 # 通过源码包的安装路径,找到该服务的启动脚本, # 也就是获得该服务的启动脚 ...