ZFNet: Visualizing and Understanding Convolutional Networks
ZFnet的创新点主要是在信号的“恢复”上面,什么样的输入会导致类似的输出,通过这个我们可以了解神经元对输入的敏感程度,比如这个神经元对图片的某一个位置很敏感,就像人的鼻子对气味敏感,于是我们也可以借此来探究这个网络各层次的功能,也能帮助我们改进网络。
论文结构

- input: \(3 \times 224 \times 224\), filter size: 7, filter count: 96, stride: 2, padding: 1, 我觉得是要补一层零的,否则输出是109而不是110-->ReLU --> maxpool: size: \(3 \times 3\), stride: 2, 似乎这里也要补一层零, 否则 \(\lfloor \frac{110-3}{2}+1 \rfloor=54\) --> contrast normalized;
- input: \(96 \times 55 \times 55\), filter size: 5, count: 256, stride: 2, padding: 0 --> ReLU --> maxpool: size: \(3 \times 3\), stride: 2, padding: 1--> contrast normlized;
- input: \(256 \times 13 \times 13\), filter size: 3, count: 384, stride: 1, padding: 1 --> ReLU
- input: \(384 \times 13 \times 13\), filter size: 3, count: 384, stride: 1, padding: 1 --> ReLU
- input: \(384 \times 13 \times 13\), filter size: 3, count: 256, stride: 1, padding: 1 --> ReLU --> maxpool: size: 3, stride: 2, padding: 0 --> contrast normlized?
- input: \(6 * 6 * 256\) -- > 4096 -- > ReLU -- > Dropout(0.5)
- input: 4096 -- > 4096 --> ReLU -- > Dropout(0.5)
- input: 4096 --> numclass ...
反卷积
网上看了很多人关于反卷积的解释,但是还是云里雾里的.
先关于步长为1的,不补零的简单情况进行分析吧, 假设:
input: \(i \times i\),
kernel_size: \(k \times k\) ,
stride: 1,
padding: 0
此时输出的大小\(o\)应当满足:
\]
现在,反卷积核大小依旧为\(k'=k\), 那么我们需要补零\(c'\)为多少才能使得反回去的特征大小为\(i\).
即:
\]
即我们要补零\(c'=k-1\).
如果stride 不为1呢?设为\(s\), 那么:
\]
按照别的博客的说话,需要在特征之间插入零那么:
\]
如果我们希望\(s'=1\)(至于为什么希望我不清楚):
\]
如果还有补零\(p\):
\]
但是回去的时候我们是不希望那个啥补零的,所以:
\]
不变,
如果\(s'=1\), 结果为:
\]
最大的问题是什么,是why! 为什么要这样反卷积啊?
ZFNet: Visualizing and Understanding Convolutional Networks的更多相关文章
- [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...
- 0 - Visualizing and Understanding Convolutional Networks(阅读翻译)
卷积神经网络的可视化理解(Visualizing and Understanding Convolutional Networks) 摘要(Abstract) 近来,大型的卷积神经网络模型在Image ...
- 深度学习论文翻译解析(十):Visualizing and Understanding Convolutional Networks
论文标题:Visualizing and Understanding Convolutional Networks 标题翻译:可视化和理解卷积网络 论文作者:Matthew D. Zeiler Ro ...
- Visualizing and Understanding Convolutional Networks论文复现笔记
目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...
- 【网络结构可视化】Visualizing and Understanding Convolutional Networks(ZF-Net) 论文解析
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4 ...
- Visualizing and Understanding Convolutional Networks
前言:研究卷积神经网络,把阅读到的一些文献经典的部分翻译一下,写成博客,代码后续给出,不足之处还请大家指出. 本文来自:tony-tan.com Github:github.com/Tony-Tan ...
- 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...
- 论文笔记:Visualizing and Understanding Convolutional Networks
2014 ECCV 纽约大学 Matthew D. Zeiler, Rob Fergus 简单介绍(What) 提出了一种可视化的技巧,能够看到CNN中间层的特征功能和分类操作. 通过对这些可视化信息 ...
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...
随机推荐
- 【讨论】APP的免填邀请码解决方案
00x0 具体需求 app中已注册的用户分享一个含有邀请码的二维码,分享到朋友圈新用户在朋友圈打开这个这个链接下载app.新用户安装后打开app后就自动绑定邀请码要求用户不填写任何东西 朋友老板出差给 ...
- org.apache.hadoop.hive.ql.metadata.HiveException: Internal Error: cannot generate all output rows for a Partition解决
自己在路径访问明细表开发时,写的sql如下 SELECT guid, sessionid, event['url'] as page, `timestamp` as ts, row_number() ...
- 【leetcode】653. Two Sum IV - Input is a BST
Given the root of a Binary Search Tree and a target number k, return true if there exist two element ...
- Shell学习(二)——变量和基本数据类型
参考博客: [1]LinuxShell脚本--变量和数据类型 [2]shell只读变量删除 一.变量 定义变量的语法 定义变量时,变量名和变量值之间使用"="分隔,并且等号两边不能 ...
- iOS UIWebview 长按图片,保存到本地相册
我们所要解决的问题如题目所示:ios中,长按Webview中的图片,将图片保存到本地相册.解决方案:对load的html网页,执行js注入,通过在webview中执行js代码,来响应点击事件,通过js ...
- 搭建mybatis开发环境
1.创建工程 <groupId>com.hope</groupId> <artifactId>day01_eesy_01mybatis</artifa ...
- 【Matlab】取整函数:fix/round/floor/ceil
fix-向零方向取整.(向中间取整) round-向最近的方向取整.(四舍五入) floor-向负无穷大方向取整.(向下取整) ceil-向正无穷大方向取整.(向上取整)
- 扬我国威,来自清华的开源项目火爆Github
前几天TJ君跟大家分享了几个有趣的Github项目(加密解密.食谱.新冠序列,各种有趣的开源项目Github上都有),其中呢,有不少是来自斯坦福大学的项目,当时TJ君就不由得想,什么时候能看到的项目都 ...
- 别被调查汇总郁闷到——有Excel呢!
年初的某天,我在家待得好好的,好吧,其实也不是待得好好的,这事大家都知道,新冠病毒嘛,都锁家里了,还好本妖向来宅--呃--跑题了--肥来! 其实我能在家好好地待着,有水有电有Wi-Fi,那是有多少人冒 ...
- MySQL 分区表,为什么分区键必须是主键的一部分?
随着业务的不断发展,数据库中的数据会越来越多,相应地,单表的数据量也会越到越大,大到一个临界值,单表的查询性能就会下降. 这个临界值,并不能一概而论,它与硬件能力.具体业务有关. 虽然在很多 MySQ ...