第二十六个知识点:描述NAF标量乘法算法

NAF标量乘法算法是标量乘法算法的一种增强,该算法使用了非邻接形式(Non-Adjacent Form)表达,减少了算法的期望运行时间。下面是具体细节:

让\(k\)是一个正整数,\(P\)是一个在域\(F_q\)上椭圆曲线\(E\)上的点。这个计算乘法操作\(Q = k * P\)就是圆曲线上的标量乘法操作(点乘)。一个最简单计算的方法就是基于双倍-加法的霍纳规则的变体。顾名思义,该方法最突出的两个构建块是点加倍和点添加原语。就像名字那样,算法也十分简单。把\(k\)写成

\[k=k_{n-1}2^{n-1}+k_{n-2}2^{n-2}+ \cdots +k_{1}+k_{0}
\]

,其中\(k \in \{0,1\},i = 0,1,2,...,n-1\)。下面有两种算法来表达。

INPUT: k = (kt−1,..., k1, k0)2, P ∈ E(Fq).

OUTPUT: k ⋅ P.

​ Q←∞.

​ For i from 0 to t−1 do

​ If ki = 1 then Q←Q+P.

​ P←2P.

Return(Q).

INPUT: k = (kt−1,..., k1, k0)2, P ∈ E(Fq).

OUTPUT: k ⋅ P.

​ Q←∞.

​ For i from t−1 down to 0 do

​ Q←2Q.

​ If ki = 1 then Q←Q+P.

Return(Q).

第一个算法计算\(k\)从右到左,第二个算法计算从左到右。在一个二进制表示中,1的数量大概是t/2=m/2。因此期望的运行时间是

\[\frac{m}{2} * A + m * D
\]

在1951年,Booth[3]提出了一个新的标量二进制表达被叫做有符号二进制方法。然后Rietweisner[4]证明了每个整数在这种表达下都是独一无二的[5]。尤其,如果\(p=(x,y) \in E(F_q)\),那么有\(-P=(x,x+y)\),如果\(F_q\)是二进制域。同时如果\(F_q\) 的阶大于3,就有\(-P = (x,-y)\)。计算减法就会很有效。这让我们想出了另一种有符号整数的表达方式。\(k = \sum^{l-1}_{i=0}k_i * 2^i\),其中\(k_i \in \{0,+,-\}\)。一个十分有用的有符号整数表达就是不相邻范式(NAF)。NAF的形式就是上面那样,但是规定了 \(k_{l-1} \neq 0\),同时没有两个相邻的\(k_i\)都是0。NAF的长度是\(l\)。

NAF的性质[1]

  • 每个正整数k都有独一无二的NAF表达。记作NAF(k)。
  • NAF(k)有所有\(k\)的有符号表达最少的非零数字。
  • NAF(k)的长度最多比二进制表达多一个。
  • 如果NAF(k)的长度是l,那么有\(\frac{2^l}{3}<k<\frac{2^{l+1}}{3}\)。
  • 在所有长度为\(l\)的NAF中,非零系数的概率约为1/3。

NAF(k)能够通过下面的算法有效率的计算。

INPUT: A positive integer k.

OUTPUT: NAF(k).

​ i←0.

​ While k≥1 do

​ If k is odd then: ki ←2−(k mod 4), k←k−ki;

​ Else: ki ←0.

​ k←k/2, i←i+1.

Return(ki−1, ki−2,..., k1, k0).

最后一个算法给出了我们可以用NAF(k)代替k[1]的二进制表示来修改标量乘法从左到右的二进制方法:

INPUT: Positive integer k, P ∈ E(Fq).

OUTPUT: k ⋅ P.

​ Based on previous algorithm compute NAF(k) =∑l−1i=0ki⋅2i.

​ Q←∞.

​ For i from l−1 down to 0 do

​ Q←2Q.

​ If ki = 1 then Q←Q+P.

​ If ki = −1 thenQ←Q−P.

Return(Q).

基于NAF的第三个和第四个属性,我们能计算上述算法的平均时间复杂度。

\[\frac{m}{3} * A + m * D
\]

[1] Hankerson, Darrel, Scott Vanstone, and Alfred J. Menezes. "Guide to elliptic curve cryptography". Springer Science & Business Media, 2004.

[2] Jonathan Taverne, Armando Faz-Hernández, Diego F. Aranha, Francisco Rodríguez-Henríquez, Darrel Hankerson, Julio López. "Speeding scalar multiplication over binary elliptic curves using the new carry-less multiplication instruction", Journal of Cryptographic Engineering, Vol. 1, No 3, pp. 187-199, 2011.

[3] A.D.Booth, “A Signed binary multiplication technique”, Journal of Applied Mathematics, Vol. 4. No. 2, pp.236-240, 1951

[4] G.W.Reitwiesner, “Binary Arithmetic”, Advances in computers, Academic Press, Vol. 1, pp.231-308, 1960

[5] Karthikeyan, E. “Survey of elliptic curve scalar multiplication algorithms.” International Journal of Advanced Networking and Applications, Vol. 4, No 2, pp. 1581-1590, 2012

第二十六个知识点:描述NAF标量乘法算法的更多相关文章

  1. 第三十六个知识点:Index Calculus算法

    第三十六个知识点:Index Calculus算法 我们这篇博客继续描述一种数学攻击,这种数学攻击被叫做Index Calculus(IC)算法. 注意这里Index Calculus算法没有找到合适 ...

  2. 第十六个知识点:描述DSA,Schnorr,RSA-FDH的密钥生成,签名和验证

    第十六个知识点:描述DSA,Schnorr,RSA-FDH的密钥生成,签名和验证 这是密码学52件事系列中第16篇,这周我们描述关于DSA,Schnorr和RSA-FDH的密钥生成,签名和验证. 1. ...

  3. 第二十四个知识点:描述一个二进制m组的滑动窗口指数算法

    第二十四个知识点:描述一个二进制m组的滑动窗口指数算法 简单回顾一下我们知道的. 大量的密码学算法的大数是基于指数问题的安全性,例如RSA或者DH算法.因此,现代密码学需要大指数模幂算法的有效实现.我 ...

  4. NeHe OpenGL教程 第二十六课:反射

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  5. Gradle 1.12用户指南翻译——第二十六章. War 插件

    其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...

  6. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  7. 第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。

    第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法. 在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算.不幸的是,尽管模块化的使用非常广泛, ...

  8. 第二十八个知识点:什么是公钥密码学的IND-CCA安全定义?

    第二十八个知识点:什么是公钥密码学的IND-CCA安全定义? 我们将在这篇博客中讨论公钥加密的IND-CCA安全. IND-CCA安全代表选择明文的不可伪造性.这样的安全方案的思想就是给定一个密文,攻 ...

  9. SQL注入之Sqli-labs系列第二十六关(过滤空格、注释符、逻辑运算符注入)和第二十六A

    开始挑战第二十六关(Trick with comments and space) 0x1看看源代码 (1)过滤了#  or and  /**/  /  \ ,通过判断也过滤了空格 (2)这样一来只能看 ...

随机推荐

  1. 巩固javaweb的第二十天

    巩固内容: 同一个页面中的多个 form 在同一个页面中可以有多个 form 如果存在多个 form,那么提交信息的时候提交哪些信息,提交给哪个文件处理,这都 与提交按钮的位置有关.如果提交按钮在第一 ...

  2. Java、Scala类型检查和类型转换

    目录 Java 1.类型检查 2.类型转换 Scala 1.类型检查 2.类型转换 Java 1.类型检查 使用:变量 instanceof 类型 示例 String name = "zha ...

  3. HTML5 基础内容(元素/属性/格式化)

    HTML基础 1.HTML元素 1.1 元素指的是开始标签到结束标签的所有代码. 1.2 元素的内容是开始标签与结束标签之间的内容. 1.3大多数HTML元素可用有属性. 1.4标签可以拥有属性为元素 ...

  4. 【原创】Altium生成Gerber时跳出The Film is too small for this PCB的解决办法

    在用altium Designer画板子的时候,要生成gerber文件的时候,会出错,出现这样的提示框:"The Film is too small for this PCB" 原 ...

  5. ClassLoad类加载器与双亲委派模型

    1. 类加载器 Class类描述的是整个类的信息,在Class类中提供的方法getName()是根据ClassPath配置的路径来进行类加载的.若类加载的路径为文件.网络等时则必须进行类加载这是就需要 ...

  6. Data Calendar

    1.Date对象 Date类在java.util包中.使用Date类的无参数构造方法创建的对象可以获取本地当前时间. 用Date的构造方法Date(long time)创建的Date对象表 示相对19 ...

  7. 南邮CTF-MISC-Remove Boyfriend

    Remove Boyfriend 打开wireshark,找到关键字部分Remove Boyfriend 在第五行 在此行右击 点击追踪流 选择TCP流,可以分析出流量的传输过程 通过上面的执行列表 ...

  8. Anaconda+pycharm(jupyter lab)搭建环境

    之前先是安装了pycharm,手动安装了python2.7和3.7版本,在pycharm里面使用alt+/手动下载包.后来想使用jupyter lab,手动下载包太麻烦且有版本管理的文艺,于是打算装A ...

  9. 编译工具grdle部署

    目录 一.简介 二.部署 三.测试 一.简介 Gradle 是以 Groovy 语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具.在github上,gradle项目很多 ...

  10. 【.NET 与树莓派】WS28XX 灯带的颜色渐变动画

    在上一篇水文中,老周演示了 WS28XX 的基本使用.在文末老周说了本篇介绍颜色渐变动画的简单实现. 在正式开始前,说一下题外话. 第一件事,最近树莓派的价格猛涨,相信有关注的朋友都知道了.所以,如果 ...