Comet OJ Contest #13 D

\(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n-2 i}\left(\begin{array}{c}{n} \\ {2 i}\end{array}\right)\)

$ T \leq 10^4 , n , m , p \leq 10^{18} $

注意,由于 $ p $ 不一定是质数,而且数据范围看起来很快速幂所有貌似只能快速幂。

这个式子可以化成:

\(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} {\sqrt a}^{2i} b^{n-2 i}\left(\begin{array}{c}{n} \\ {2 i}\end{array}\right)\)

然后其实就是 $ (\sqrt a + b)^n $ 的偶数次项的和。

偶数次项其实可以化成 $ \frac{1}{2} ( (\sqrt a + b)^n - (\sqrt a - b) ^ n ) $ 当然这是当 $ n $ 为偶数时,如果是奇数要反过来。

这个式子可以直接类似复数的快速幂,因为我们知道最后一定不会剩下根号。

当然,也可以看成一个特征方程的根,就是一个 $ f(1) = 1 , f(2) = b , f(n) = 2bf(n - 1) + (-b^2+a) f(n - 2) $。

/*Heroes Never Die!*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#define int __int128_t
#define ll __int128_t
#define N 2
struct mtrx{
ll a[3][3];
} tmp , cur , ans ;
ll a , b , P;
void mul( mtrx& a , mtrx& b ) {
memset(tmp.a,0,sizeof tmp.a);
for( ll i = 0 ; i < N ; ++ i )
for( ll p = 0 ; p < N ; ++ p )
if(a.a[i][p])
for( ll j = 0 ; j < N ; ++ j )
tmp.a[i][j] += a.a[i][p] * b.a[p][j] , tmp.a[i][j] %= P; } void power( ll n ) {
memset(cur.a , 0 , sizeof cur.a) , memset(ans.a,0,sizeof ans.a);
cur.a[0][0] = 2 * b % P , cur.a[0][1] = ( - b * b % P + a + P ) % P;
cur.a[1][0] = 1;
ans.a[0][0] = 1, ans.a[1][1] = 1;
while( n ) {
if( n & 1 ) mul( ans , cur ) , ans = tmp;
mul( cur , cur ) , cur = tmp , n >>= 1 ;
}
}
ll n;
inline __int128_t read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
inline void print(__int128_t x)
{
if(x<0){putchar('-');x=-x;}
if(x>9) print(x/10);
putchar(x%10+'0');
}
signed main() {
//freopen("input","r",stdin);
signed T; cin >> T;
while( T-- ){
n = read() , a = read() , b = read( ) , P = read();
power(n - 1);
print((ans.a[0][0] * b % P + ans.a[0][1]) % P); puts("");
}
}
//qwq

Comet OJ Contest #13 D的更多相关文章

  1. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  2. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  3. Comet OJ Contest #13 简要题解

    C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. ...

  4. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集

    题意 给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, ...

  5. Comet OJ - Contest #13

    Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. ...

  6. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  7. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  8. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  9. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

随机推荐

  1. noj->电子老鼠走迷宫

    00 问题 描述: 有一只电子老鼠被困在如下图所示的迷宫中.这是一个12*12单元的正方形迷宫,黑色部分表示建筑物,白色部分是路.电子老鼠可以在路上向上.下.左.右行走,每一步走一个格子.现给定一个起 ...

  2. 6. 站在巨人的肩膀学习Java Filter型内存马

    本文站在巨人的肩膀学习Java Filter型内存马,文章里面的链接以及图片引用于下面文章,参考文章: <Tomcat 内存马学习(一):Filter型> <tomcat无文件内存w ...

  3. 机器学习:SVM

    SVM 前言:支持向量机(Support Vector Machine, SVM),作为最富盛名的机器学习算法之一,其本身是一个二元分类算法,为了更好的了解SVM,首先需要一些前提知识,例如:梯度下降 ...

  4. linux与windows下文件编码问题

    注:转换操作均在Linux终端进行操作 DOS与Unix格式转换 安装工具:dos2unix.unix2dos # ubuntu apt-get install dos2unix apt-get in ...

  5. 通过串口利用printf函数输出数据

    一.printf函数格式 printf函数具有强大的输出功能 %表示格式化字符串输出 目前printf支持以下格式的输出,例如: printf("%c",a);输出单个字符. pr ...

  6. 单片机STM32的启动文件详解--学习笔记

    启动文件简介 启动文件由汇编编写,是系统上电复位后第一个执行的程序.主要做了以下工作: 1.初始化堆栈指针SP=_initial_sp 2.初始化PC 指针=Reset_Handler 3.初始化中断 ...

  7. JavaScript中的this对象指向理解

    在JavaScript中,this不是固定不变的,它的指向取决于上下文环境,一般的,认为this指向使用它时所在的对象.主要有以下几类指向: 在方法中,this 表示该方法所属的对象. 如果单独使用, ...

  8. linux shell脚本中的开头#!/bin/bash的含义

    对于linux上需要执行 的shell脚本,通常第一行的内容是 #!/bin/bash 当然有很多时候不规范的写法可以忽略掉这一句,执行起来好像也是ok,结果没什么不一样 .. 这只是因为在我们常用 ...

  9. Linux 文本三剑客之 sed

    Linux 系统中一切皆文件. 文件是个文本.可以读.可以写,如果是二进制文件,还能执行. 在使用Linux的时候,大都是要和各式各样文件打交道.熟悉文本的读取.编辑.筛选就是linux系统管理员的必 ...

  10. 【动图解释】关系数据库de关系代数小记

    本文章在 Github 撰写,同时在 我的博客 进行了发布. 最近学数据库概论学到了关系数据库的关系代数了.哎嘛,真的把我整晕了,尤其是关系代数的使用,很容易让人被蒙在鼓里. 对我来说槽点最大的莫过于 ...