Comet OJ Contest #13 D
Comet OJ Contest #13 D
\(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n-2 i}\left(\begin{array}{c}{n} \\ {2 i}\end{array}\right)\)
$ T \leq 10^4 , n , m , p \leq 10^{18} $
注意,由于 $ p $ 不一定是质数,而且数据范围看起来很快速幂所有貌似只能快速幂。
这个式子可以化成:
\(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} {\sqrt a}^{2i} b^{n-2 i}\left(\begin{array}{c}{n} \\ {2 i}\end{array}\right)\)
然后其实就是 $ (\sqrt a + b)^n $ 的偶数次项的和。
偶数次项其实可以化成 $ \frac{1}{2} ( (\sqrt a + b)^n - (\sqrt a - b) ^ n ) $ 当然这是当 $ n $ 为偶数时,如果是奇数要反过来。
这个式子可以直接类似复数的快速幂,因为我们知道最后一定不会剩下根号。
当然,也可以看成一个特征方程的根,就是一个 $ f(1) = 1 , f(2) = b , f(n) = 2bf(n - 1) + (-b^2+a) f(n - 2) $。
/*Heroes Never Die!*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#define int __int128_t
#define ll __int128_t
#define N 2
struct mtrx{
ll a[3][3];
} tmp , cur , ans ;
ll a , b , P;
void mul( mtrx& a , mtrx& b ) {
memset(tmp.a,0,sizeof tmp.a);
for( ll i = 0 ; i < N ; ++ i )
for( ll p = 0 ; p < N ; ++ p )
if(a.a[i][p])
for( ll j = 0 ; j < N ; ++ j )
tmp.a[i][j] += a.a[i][p] * b.a[p][j] , tmp.a[i][j] %= P;
}
void power( ll n ) {
memset(cur.a , 0 , sizeof cur.a) , memset(ans.a,0,sizeof ans.a);
cur.a[0][0] = 2 * b % P , cur.a[0][1] = ( - b * b % P + a + P ) % P;
cur.a[1][0] = 1;
ans.a[0][0] = 1, ans.a[1][1] = 1;
while( n ) {
if( n & 1 ) mul( ans , cur ) , ans = tmp;
mul( cur , cur ) , cur = tmp , n >>= 1 ;
}
}
ll n;
inline __int128_t read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
inline void print(__int128_t x)
{
if(x<0){putchar('-');x=-x;}
if(x>9) print(x/10);
putchar(x%10+'0');
}
signed main() {
//freopen("input","r",stdin);
signed T; cin >> T;
while( T-- ){
n = read() , a = read() , b = read( ) , P = read();
power(n - 1);
print((ans.a[0][0] * b % P + ans.a[0][1]) % P); puts("");
}
}
//qwq
Comet OJ Contest #13 D的更多相关文章
- Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)
来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...
- Comet OJ Contest #13 简要题解
C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. ...
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集
题意 给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, ...
- Comet OJ - Contest #13
Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
随机推荐
- 小白自制Linux开发板 八. Linux音频驱动配置
不知不觉小白自制开发板系列已经到第八篇了,本篇要配置的是音频驱动,也算是硬件部分的最后一片了,积攒的文章也差不多全放完了,后续更新可能会放缓,还请见谅. 对于F1C200s是自带了多媒体处理功能的,所 ...
- cunda 常用命令,删除,创建,换源
https://github.com/tensorflow/tensorflow/ conda create --name [虚拟环境名] python=3.7 创建一个环境 conda activa ...
- Beta阶段第七次会议
Beta阶段第七次会议 时间:2020.5.23 完成工作 姓名 工作 难度 完成度 ltx 1.修改小程序页面无法加载bug2.修改条件语句,使得页面能够正常显示 中 90% xyq 1.根据api ...
- FastAPI 学习之路(二十八)使用密码和 Bearer 的简单 OAuth2
OAuth2 规定在使用(我们打算用的)「password 流程」时,客户端/用户必须将 username 和 password 字段作为表单数据发送.我们看下在我们应该去如何实现呢. 我们写一个登录 ...
- linux下命令拼接
前言:我个five,一道特别简单的拼接题没有做出来,我吐了,不过也是涨知识了 直接切入正题了 linux命令是可以拼接的,也就是说在一个system("???")下我们的???可以 ...
- TVS管性能及选型总结
https://wenku.baidu.com/view/5b5bda5526fff705cc170af8.html
- 从零开始 DIY 智能家居 - 智能开窗器
前言 做完智慧浇水器之后对这种可以节省时间和精力的场景总有一种谜之向往(懒鬼是这样的),这次我准备做一个可以自动开窗的装置,结合之前的甲醛检测传感器就可以实现甲醛含量过高自动开窗通风,之后还可以把燃气 ...
- linux 内核源代码情景分析——linux 内核源码中的汇编语言代码
1. 用汇编语言编写部分核心代码的原因: ① 操作系统内核中的底层程序直接与硬件打交道,需要用到一些专用的指令,而这些指令在C语言中并无对应的语言成分: ② CPU中的一些特殊指令也没有对应的C语言成 ...
- 一步一步学ROP之linux_x86篇(蒸米spark)
目录 一步一步学ROP之linux_x86篇(蒸米spark) 0x00 序 0x01 Control Flow Hijack 程序流劫持 0x02 Ret2libc – Bypass DEP 通过r ...
- Harbor仓库搭建及使用
目录 一.docker配置 二.安装docker-compose 三.安装harbor 四.管理harbor 五.springboot项目配置docker 六.linux服务器上打包并推送至harbo ...