【LeetCode】837. New 21 Game 解题报告(Python)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/new-21-game/description/
题目描述
Alice plays the following game, loosely based on the card game “21”.
Alice starts with 0 points, and draws numbers while she has less than K points. During each draw, she gains an integer number of points randomly from the range [1, W], where W is an integer. Each draw is independent and the outcomes have equal probabilities.
Alice stops drawing numbers when she gets K or more points. What is the probability that she has N or less points?
Example 1:
Input: N = 10, K = 1, W = 10
Output: 1.00000
Explanation: Alice gets a single card, then stops.
Example 2:
Input: N = 6, K = 1, W = 10
Output: 0.60000
Explanation: Alice gets a single card, then stops.
In 6 out of W = 10 possibilities, she is at or below N = 6 points.
Example 3:
Input: N = 21, K = 17, W = 10
Output: 0.73278
Note:
- 0 <= K <= N <= 10000
- 1 <= W <= 10000
- Answers will be accepted as correct if they are within 10^-5 of the correct answer.
The judging time limit has been reduced for this question.
题目大意
刚开始的时候,有0分,她会已知在[1,W]中随机选数字,直到有K分或者K分以上停止。问她能够正好得到N分或者更少分的概率。
解题方法
动态规划
类似爬楼梯的问题,每次可以跨[1,W]个楼梯,当一共爬了K个和以上的台阶时停止,问这个时候总台阶数<=N的概率。
使用动态规划,dp[i]表示得到点数i的概率,只有当现在的总点数少于K的时候,才会继续取数。那么状态转移方程可以写成:
- 当
i <= K时,dp[i] = (前W个dp的和)/ W;(爬楼梯得到总楼梯数为i的概率) - 当
K < i < K + W时,那么在这次的前一次的点数范围是[i - W, K - 1]。我们的dp数组表示的是得到点i的概率,所以dp[i]=(dp[K-1]+dp[K-2]+…+dp[i-W])/W.(可以从前一次的基础的上选[1,W]个数字中的一个) - 当i>=K+W时,这种情况下无论如何不都应该存在的,所以dp[i]=0.
时间复杂度是O(N),空间复杂度是O(N).
class Solution(object):
def new21Game(self, N, K, W):
"""
:type N: int
:type K: int
:type W: int
:rtype: float
"""
if K == 0: return 1
dp = [1.0] + [0] * N
tSum = 1.0
for i in range(1, N + 1):
dp[i] = tSum / W
if i < K:
tSum += dp[i]
if 0 <= i - W < K:
tSum -= dp[i - W]
return sum(dp[K:])
相似题目
参考资料
https://blog.csdn.net/qq_20141867/article/details/81261711
日期
2018 年 11 月 1 日 —— 小光棍节
【LeetCode】837. New 21 Game 解题报告(Python)的更多相关文章
- 【LeetCode】62. Unique Paths 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...
- 【LeetCode】376. Wiggle Subsequence 解题报告(Python)
[LeetCode]376. Wiggle Subsequence 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.c ...
- 【LeetCode】870. Advantage Shuffle 解题报告(Python)
[LeetCode]870. Advantage Shuffle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn ...
- 【LeetCode】649. Dota2 Senate 解题报告(Python)
[LeetCode]649. Dota2 Senate 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...
- 【LeetCode】911. Online Election 解题报告(Python)
[LeetCode]911. Online Election 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ ...
- 【LeetCode】886. Possible Bipartition 解题报告(Python)
[LeetCode]886. Possible Bipartition 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu ...
- 【LeetCode】36. Valid Sudoku 解题报告(Python)
[LeetCode]36. Valid Sudoku 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址 ...
- 【LeetCode】593. Valid Square 解题报告(Python)
[LeetCode]593. Valid Square 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...
- 【LeetCode】435. Non-overlapping Intervals 解题报告(Python)
[LeetCode]435. Non-overlapping Intervals 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemi ...
随机推荐
- Python——MacBook Pro中安装pip
1.系统已有python2和python3,如何检查MacBook Pro系统是否安装的有pip? 看到terminal的提示没有,有提示pip的,下面的提示,说明pip安装了. 要查看pip3是否安 ...
- rust Option枚举
枚举 1 fn main() { 2 let a_binding; 3 { 4 let x = 2; 5 a_binding = x * x; 6 } 7 println!("a bindi ...
- Linux-centos7设置静态IP地址
参考:https://blog.csdn.net/sjhuangx/article/details/79618865
- 22-reverseString-Leetcode
思路:so easy class Solution { public: string reverseString(string s) { int n = s.size(); for(int i=0;i ...
- (转载)java排序实现
Java实现几种常见排序方法 日常操作中常见的排序方法有:冒泡排序.快速排序.选择排序.插入排序.希尔排序,甚至还有基数排序.鸡尾酒排序.桶排序.鸽巢排序.归并排序等. 冒泡排序是一种简单的排序算法. ...
- HDFS03 HDFS的API操作
HDFS的API操作 目录 HDFS的API操作 客户端环境准备 1.下载windows支持的hadoop 2.配置环境变量 3 在IDEA中创建一个Maven工程 HDFS的API实例 用客户端远程 ...
- Java实现 HTTP/HTTPS请求绕过证书检测
java实现 HTTP/HTTPS请求绕过证书检测 一.Java实现免证书访问Https请求 创建证书管理器类 import java.security.cert.CertificateExcepti ...
- display:inline-block,block,inline元素的区别
1.display:block将元素显示为块级元素,从而可以更好地操控元素的宽高,以及内外边距,每一个块级元素都是从新的一行开始.2.display : inline将元素显示为行内元素,高度,行高以 ...
- vue引入d3
单页面使用 cnpm install d3 --save-dev 指定版本安装 cnpm install d3@6.3.1 -S <script> import * as d3 from ...
- 【编程思想】【设计模式】【创建模式creational】Borg/Monostate
Python版 https://github.com/faif/python-patterns/blob/master/creational/borg.py #!/usr/bin/env python ...