作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/new-21-game/description/

题目描述

Alice plays the following game, loosely based on the card game “21”.

Alice starts with 0 points, and draws numbers while she has less than K points. During each draw, she gains an integer number of points randomly from the range [1, W], where W is an integer. Each draw is independent and the outcomes have equal probabilities.

Alice stops drawing numbers when she gets K or more points. What is the probability that she has N or less points?

Example 1:

Input: N = 10, K = 1, W = 10
Output: 1.00000
Explanation: Alice gets a single card, then stops.

Example 2:

Input: N = 6, K = 1, W = 10
Output: 0.60000
Explanation: Alice gets a single card, then stops.
In 6 out of W = 10 possibilities, she is at or below N = 6 points.

Example 3:

Input: N = 21, K = 17, W = 10
Output: 0.73278

Note:

  1. 0 <= K <= N <= 10000
  2. 1 <= W <= 10000
  3. Answers will be accepted as correct if they are within 10^-5 of the correct answer.
    The judging time limit has been reduced for this question.

题目大意

刚开始的时候,有0分,她会已知在[1,W]中随机选数字,直到有K分或者K分以上停止。问她能够正好得到N分或者更少分的概率。

解题方法

动态规划

类似爬楼梯的问题,每次可以跨[1,W]个楼梯,当一共爬了K个和以上的台阶时停止,问这个时候总台阶数<=N的概率。

使用动态规划,dp[i]表示得到点数i的概率,只有当现在的总点数少于K的时候,才会继续取数。那么状态转移方程可以写成:

  1. i <= K时,dp[i] = (前W个dp的和)/ W;(爬楼梯得到总楼梯数为i的概率)
  2. K < i < K + W时,那么在这次的前一次的点数范围是[i - W, K - 1]。我们的dp数组表示的是得到点i的概率,所以dp[i]=(dp[K-1]+dp[K-2]+…+dp[i-W])/W.(可以从前一次的基础的上选[1,W]个数字中的一个)
  3. 当i>=K+W时,这种情况下无论如何不都应该存在的,所以dp[i]=0.

时间复杂度是O(N),空间复杂度是O(N).

class Solution(object):
def new21Game(self, N, K, W):
"""
:type N: int
:type K: int
:type W: int
:rtype: float
"""
if K == 0: return 1
dp = [1.0] + [0] * N
tSum = 1.0
for i in range(1, N + 1):
dp[i] = tSum / W
if i < K:
tSum += dp[i]
if 0 <= i - W < K:
tSum -= dp[i - W]
return sum(dp[K:])

相似题目

参考资料

https://blog.csdn.net/qq_20141867/article/details/81261711

日期

2018 年 11 月 1 日 —— 小光棍节

【LeetCode】837. New 21 Game 解题报告(Python)的更多相关文章

  1. 【LeetCode】62. Unique Paths 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...

  2. 【LeetCode】376. Wiggle Subsequence 解题报告(Python)

    [LeetCode]376. Wiggle Subsequence 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.c ...

  3. 【LeetCode】870. Advantage Shuffle 解题报告(Python)

    [LeetCode]870. Advantage Shuffle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn ...

  4. 【LeetCode】649. Dota2 Senate 解题报告(Python)

    [LeetCode]649. Dota2 Senate 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...

  5. 【LeetCode】911. Online Election 解题报告(Python)

    [LeetCode]911. Online Election 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ ...

  6. 【LeetCode】886. Possible Bipartition 解题报告(Python)

    [LeetCode]886. Possible Bipartition 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu ...

  7. 【LeetCode】36. Valid Sudoku 解题报告(Python)

    [LeetCode]36. Valid Sudoku 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址 ...

  8. 【LeetCode】593. Valid Square 解题报告(Python)

    [LeetCode]593. Valid Square 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...

  9. 【LeetCode】435. Non-overlapping Intervals 解题报告(Python)

    [LeetCode]435. Non-overlapping Intervals 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemi ...

随机推荐

  1. 苹果ios通过描述文件获取udid

    苹果ios通过描述文件获取udid 需要准备的东西 1,安装描述文件只支持https的回调地址,所以需要申请https域名 2,描述文件签名,不安装也可,只要能接受红色的字 步骤: 1,准备xml文件 ...

  2. java类加载、对象创建过程

    类加载过程: 1, JVM会先去方法区中找有没有相应类的.class存在.如果有,就直接使用:如果没有,则把相关类的.class加载到方法区 2, 在.class加载到方法区时,会分为两部分加载:先加 ...

  3. 巩固java第五天

    巩固内容: HTML 实例解析 <p> 元素: <p>这是第一个段落.</p> 这个 <p> 元素定义了 HTML 文档中的一个段落. 这个元素拥有一个 ...

  4. jdk1.6,1.7,1.8解压版无需安装(64位)

    1.java SE 1.6各个版本 jdk http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads ...

  5. ORACLE DBMS_ROWID包详解

    这个包在11gR2中有11个函数或存储: 1. 根据给定参数返回一个rowid --根据给定参数返回一个rowid FUNCTION rowid_create(rowid_type IN NUMBER ...

  6. 【Spring Framework】Spring入门教程(六)Spring AOP使用

    Spring的AOP 动态代理模式的缺陷是: 实现类必须要实现接口 -JDK动态代理 无法通过规则制定拦截无需功能增强的方法. Spring-AOP主要弥补了第二个不足,通过规则设置来拦截方法,并对方 ...

  7. Spring Boot中使用Dubbo

    高并发下Redis会出现的问题: 缓存穿透 缓存雪崩 热点缓存 一.定义commons工程11-dubboCommons (1) 创建工程 创建Maven的Java工程,并命名为11-dubboCom ...

  8. 利用ajax,js以及正则表达式来验证表单递交

    <!DOCTYPE html><html lang="en"> <head> <meta charset="utf-8" ...

  9. Redis监控参数

    目录 一.客户端 二.服务端 一.客户端 127.0.0.1:6379> info stats #Redis自启动以来处理的客户端连接数总数 total_connections_received ...

  10. MySQL查询数据库表空间大小

    一.查询所有数据库占用空间大小 SELECT TABLE_SCHEMA, CONCAT( TRUNCATE(SUM(data_length) / 1024 / 1024, 2), ' MB' ) AS ...