目录:

(一)轮廓发现的介绍

(二)代码实现

(1)使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓

(2)使用canny边缘检测获取二值化图像

(一)轮廓发现的介绍与API的介绍

操作步骤:

1.转换图像为二值化图像:threshold方法或者canny边缘提取获取的都是二值化图像
2.通过二值化图像寻找轮廓:findContours
3.描绘轮廓:drawContours

(二)代码实现

(1)使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓

 1 def contours_demo(image):
2 dst = cv.GaussianBlur(image,(9,9),15)  #高斯模糊,消除噪声
3 gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY) #先变灰度图像
4 ret, binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU) #获取二值图像
5 cv.imshow("binary image",binary)
6
7 # cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #RETR_TREE包含检测内部
8 cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE) #RETR_EXTERNAL检测外部轮廓
9 for i, contour in enumerate(contours):
10 # cv.drawContours(image,contours,i,(0,0,255),2)  #绘制轮廓
11 cv.drawContours(image,contours,i,(0,0,255),-1)  #填充轮廓
12 print(i)
13 cv.imshow("detect contours",image)
14
15
16 src = cv.imread("./lk.png") #读取图片
17 cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
18 cv.imshow("input image",src) #通过名字将图像和窗口联系
19
20 contours_demo(src)
21
22 cv.waitKey(0) #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
23 cv.destroyAllWindows() #销毁所有窗口

(2)使用canny边缘检测获取二值化图像

 1 def contours_demo(image):
2 binary = edge_demo(image)
3
4 cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #RETR_TREE包含检测内部
5 for i, contour in enumerate(contours):
6 # cv.drawContours(image,contours,i,(0,0,255),2)
7 cv.drawContours(image,contours,i,(0,0,255),-1)
8 print(i)
9 cv.imshow("detect contours",image)
10
11 def edge_demo(image):
12 dst = cv.GaussianBlur(image,(3,3),0)
13 gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY) #先变灰度图像
14
15 edge_output = cv.Canny(gray,50,108)
16
17 cv.imshow("detect contours",edge_output)
18 return edge_output
19
20 src = cv.imread("./lk.png") #读取图片
21 cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
22 cv.imshow("input image",src) #通过名字将图像和窗口联系
23
24 contours_demo(src)
25
26 cv.waitKey(0) #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
27 cv.destroyAllWindows() #销毁所有窗口

参考:

https://www.cnblogs.com/ssyfj/p/9276443.html

python实现轮廓发现的更多相关文章

  1. opencv python:轮廓发现

    example import cv2 as cv import numpy as np def edge_demo(image): blurred = cv.GaussianBlur(image, ( ...

  2. 【python+opencv】轮廓发现

    python+opencv---轮廓发现 轮廓发现---是基于图像边缘提取的基础寻找对象轮廓的方法, 所有边缘提取的阈值选定会影响最终轮廓发现的结果. 介绍两种API使用: -cv.findConto ...

  3. Python+OpenCV图像处理(十六)—— 轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...

  4. opencv::轮廓发现(find contour in your image)

    轮廓发现(find contour) 轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法. 所以边缘提取的阈值选定会影响最终轮廓发现结果 //发现轮廓 cv::findContours( InputO ...

  5. Pytest权威教程-更改标准(Python)测试发现

    目录 更改标准(Python)测试发现 在测试收集过程中忽略路径 测试期间收集的测试取消 保留从命令行指定的重复路径 更改目录递归 更改命名约定 将cmdline参数解释为Python包 找出收集的东 ...

  6. opencv——轮廓发现与轮廓(二值图像)分析

    引言 二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息. 这里顺带提下边缘检测,和轮廓提取的区别: 边缘检测 ...

  7. 15、OpenCV Python 轮廓发现

    __author__ = "WSX" import cv2 as cv import numpy as np # 基于拓扑结构来发现和绘制(边缘提取) # cv.findConto ...

  8. 用python实现新词发现程序——基于凝固度和自由度

    互联网时代,信息产生的数量和传递的速度非常快,语言文字也不断变化更新,新词层出不穷.一个好的新词发现程序对做NLP(自然预言处理)来说是非常重要的. N-Gram加词频 最原始的新词算法莫过于n-gr ...

  9. python opencv3 轮廓检测

    git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np # 创建一个2 ...

随机推荐

  1. 前端开发3年了,竟然不知道什么是 Vue 脚手架?(下)

    上一篇文章<前端开发3年了,竟然不知道什么是 Vue 脚手架?(上)>介绍了什么是脚手架,以及Vue-cli 2.x如何创建项目,创建的项目结构.这篇文章介绍 Vue-cli 3.x 如何 ...

  2. Electron+Vue+ElementUI开发环境搭建

    Node环境搭建 本文假定你完成了nodejs的环境基础搭建: 镜像配置(暂时只配置node包镜像源,部分包的二进制镜像源后续讨论).全局以及缓存路径配置,全局路径加入到了环境变量 $ node -v ...

  3. ArrayList-源码分析-自动扩容机制

    ArrayList类: public class ArrayList....{ ...... private static final int DEFAULT_CAPACITY = 10; //默认容 ...

  4. java程序远程连接Linux服务器

    JSCH或 Ganymed Ganymed: Ganymed SSH-2 for Java是用纯Java实现SSH-2协议的一个包. 可以利用它直接在Java程序中连接SSH服务器.官网地址为 htt ...

  5. 2021.3.10--vj补题

    B - Saving the City cf--1443B Bertown is a city with nn buildings in a straight line. The city's sec ...

  6. python和js分别在多行字符串中插入一行字符串

    问题 一个多行字符串,"asfdb;\nwesfpjoing;\nwbfliqwbefpwqufn\nasfdwe\nsafewt\nqwern\nvar\ntgwtg\n\nftwg\n& ...

  7. FastAPI 学习之路(三十八)Static Files

    如果使用前后台不分离的开发方式,那么模板文件中使用的静态文件,比如css/js等文件的目录需要在后台进行配置,以便模板渲染是能正确读到这些静态文件.那么我们应该如何处理呢. 首先安装依赖 pip in ...

  8. js--Symbol 符号基本数据类型

    前言 ECMAScript 6 中新增了 Symbol 符号这一基本数据类型,那么Symbol 是用来干什么的,对开发又有什么帮助呢?本文来总结记录一下 Symbol 的相关知识点. 正文 Symbo ...

  9. mysql分表之后怎么平滑上线?

    分表的目的 项目开发中,我们的数据库数据越来越大,随之而来的是单个表中数据太多.以至于查询数据变慢,而且由于表的锁机制导致应用操作也受到严重影响,出现了数据库性能瓶颈. 当出现这种情况时,我们可以考虑 ...

  10. 虚树 virtual-tree

    我们发现,如果一棵树中真正需要处理的点很少,而总共点数很多时,可以只处理那些需要的点,而忽略其他点. 因此我们可以根据那些需要的点构建虚树,只保留关键点. oi-wiki上对虚树的介绍 我们根据一下方 ...