Description

  在某个遥远的国家里,有n个城市。编号外1,2,3,…,n。
  这个国家的政府修建了m条双向的通路。每条公路连接着两个城市。沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油。

  开车每经过一个城市,都会被收取一定的费用(包括起点和终点城市)。所有的收费站都在城市中,在城市间的公路上没有任何收费站。

  小红现在要开车从城市u到城市v(1<=u,v<=n)。她的车最多可以装下s升的汽油。在出发的时候,车的邮箱是满的,并且她在路上不想加油,即从城市u到城市v的过程中,她都不加油。

  在路上,每经过一个城市,她要交一定的费用。如果她某次交的费用比较多,她的心情就会变得很糟。所以她想知道,在她能到达目的地的前提下,她交的费用中最多的一次最少是多少。这个问题对于她来说太难了,于是她找到了聪明的你,你能帮她吗?

Input

第一行5个正整数n,m,u,v,s

接下来有n行,每行1个正整数fi表示经过城市i,需要交费fi元。

再接下来有m行,每行3个正整数ai,bi,ci(1<=ai,bi<=n),表示城市ai和城市bi之间有一条公路,如果从城市ai到城市bi,或者从城市bi到城市ai,需要ci升汽油

Output

仅一个整数,表示小红交费最多的一次的最小值。

如果她无法到达城市v,输出-1。

Sample Input

输入样例1
4 4 2 3 8
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3 输入样例2:
4 4 2 3 3
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3

Sample Output

输出样例1:
8 输出样例2:
-1

Hint

数据规模:
对于60%的数据,满足n≤200,m≤10000,s≤200

对于100%的数据,满足n≤10000,m≤50000,s≤1 000 000 000
对于100%的数据,满足ci≤1 000 000
000,fi≤1 000 000 000
可能有两条边连接着相同的城市

考虑二分答案 则对于每次二分的值 S

将图中端点的收费大于S 的边删去

如果以油量为权跑完最短路 d[v]的值大于总油量则这次二分的值不是答案

以此扩展

因为数据过大 且SPFA容易被卡 边权无负 我们选择Dijkstra算法来检查

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<map>
#define LL long long
#define f(a,b,c) for(long long i = (a); i <= (b); i += (c))
using namespace std;
long long n,m,u,v,s;
long long f[10000000],head[1000000];
long long a,b,t;
long long d[10000000],maxx;
map<pair<long long,long long >,bool>QWQ;
struct Edge{
long long next,final,value;
}e[10000000];
struct node{
long long to,value;
bool operator <(const node &QWQ) const
{
return value > QWQ.value;
}
};
inline void dis(long long ans)
{
memset(d,0x3f,sizeof(d));
d[u] = 0;
priority_queue<node> QAQ;
QAQ.push((node){u,0});
while(!QAQ.empty())
{
long long u_ = QAQ.top().to;
long long v_ = QAQ.top().value;
QAQ.pop();
if(f[u_] > ans) continue;
if(v_ != d[u_]) continue;
for(long long i = head[u_] ; i; i = e[i].next )
{
long long place = e[i].final;
long long w = e[i].value;
if(d[u_] + w < d[place])
{
d[place] = d[u_] + w ;
QAQ.push((node){place,d[place]});
}
}
}
}
void add_edge(long long begin,long long to,long long c)
{
e[++e[0].value].final = to;
e[e[0].value].value = c;
e[e[0].value].next = head[begin];
head[begin] = e[0].value;
}
int main()
{
scanf("%lld%lld%lld%lld%lld",&n,&m,&u,&v,&s);
f(1,n,1)
{
scanf("%lld",&f[i]);
maxx = max(f[i],maxx);
}
f(1,m,1)
{
scanf("%lld%lld%lld",&a,&b,&t);
if(!QWQ[make_pair(a,b)])
{
add_edge(a,b,t);
add_edge(b,a,t);
QWQ[make_pair(a,b)] = QWQ[make_pair(b,a)] = 1;
}
} long long l = max(f[u],f[v]),r = maxx+2;
dis(maxx);
while(l <= r)
{
long long mid = (l + r )/2;
dis(mid);
if(d[v] > s)
l = mid + 1;
else
r = mid ;
}
if(d[v] > s)
{
cout<< -1;
return 0;
}
return 0;
}

【NOI导刊200908模拟试题02 题4】【二分+Dijkstra】 收费站的更多相关文章

  1. NOI导刊 2018河南郑州游记

    前言 本蒟蒻来自浙江的弱市弱校,因为不想两年\(OI\)一场空,以及想出去玩,所以与同届大佬一起报了\(NOI\)导刊,希望能留下点不错的记忆吧. \(Day\ 0\) \(10\)月\(1\)日 经 ...

  2. NOI导刊总结

    NOI导刊总结 前两天去郑州,参加了什么NOI导刊的培训,然后就发现大佬是真的多,还十分意外的发现了一个事,清华北大是不是发笔记本和耳机,为啥三个老师的都一模一样... 这几天主要以讲.NOIP知识点 ...

  3. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  4. P1774 最接近神的人_NOI导刊2010提高(02)

    P1774 最接近神的人_NOI导刊2010提高(02) 关于此题为什么可以使用求逆序对的方法来做 假设一个数\(a_i\),且前\(i-1\)个数已经成为单调增的数列. 我们要从前\(a_1\)至\ ...

  5. 洛谷——P1966 火柴排队&&P1774 最接近神的人_NOI导刊2010提高(02)

    P1966 火柴排队 这题贪心显然,即将两序列中第k大的数的位置保持一致,证明略: 树状数组求逆序对啦 浅谈树状数组求逆序对及离散化的几种方式及应用 方法:从前向后每次将数插入到bit(树状数组)中, ...

  6. 洛谷P1774 最接近神的人_NOI导刊2010提高(02) [2017年6月计划 线段树03]

    P1774 最接近神的人_NOI导刊2010提高(02) 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门 ...

  7. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  8. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  9. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

随机推荐

  1. nginx搭建网站踩坑经历

    为了更好的阅读体验,请访问我的个人博客 前言 早上刷抖音刷到一个只需要三步的nginx搭建教程(视频地址),觉得有些离谱,跟着复现了一遍,果然很多地方不严谨并且省略了大量步骤,对于很多不了解linux ...

  2. 【NXOpen.UF扩展】修改表达式

    public static class UFExpEx { /// <summary> /// 修改当前部件的表达式 /// </summary> /// <param ...

  3. 我们一起来回顾一下Synchronized关键字吧

    多线程一直Java开发中的难点,也是面试中的常客,趁着还有时间,打算巩固一下JUC方面知识,我想机会随处可见,但始终都是留给有准备的人的,希望我们都能加油!!! 沉下去,再浮上来,我想我们会变的不一样 ...

  4. 第四次Scrum Metting

    日期:2021年4月29日 会议主要内容概述:交代近两日工作,进一步细化上次讨论细节,代码合并. 一.进度情况## 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 ...

  5. [CSP-S 2021] 廊桥分配 题解

    写篇题解来纪念我炸掉的CSP 唯一会做的题代码写挂了(痛苦面具 思路 我看到这道题第一眼想到的是线段树,感觉可以用线段树维护飞机入站到出战的这段时间,想了半天想不到代码怎么写. 国内机场与国外机场要分 ...

  6. 个人宽带如何开启IPv6网络访问

    IPv6是大势所趋,就在前段时间湖南联通发布公告,对家庭宽带提供 IPv6 地址,不再提供 IPv4地址,那本文就介绍 个人宽带如何开启 IPv6网络访问. 湖南联通停止向普通家庭宽带用户提供公网 I ...

  7. MVC +Jqyery+Ajax 实现弹出层提醒

    CSS部分: /*登录提示*/ * {margin: 0; padding: 0; } .layer { width: 350px; padding: 20px; background: #fff; ...

  8. cf13B Letter A(分类+简单计算几何,,)

    题意: 给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A. 组成字母A的条件: 1.两个线段有公共端点. 2.这两个线段夹角小于等于90度. 3.第三个线段的两个端点分别在这两个线段 ...

  9. oeasy教您玩转vim - 56 - # 字符可视化模式

    ​ 可视化编辑 回忆上节课内容 我们学习了关于模式匹配中使用参数 单个参数 :%s/<h2>\(.*\)</h2>/ - \1/g 多个参数 :%s/<img src=\ ...

  10. Java基础语法5-运算符

    运算符 基本运算符(算术.赋值.关系.逻辑等)不再赘述 位运算符 位运算符&.|.^.~.<<.>> &与 |或 ~非 ^异或 <<左移 >& ...