考虑到这种对于某种操作顺序有一个权值。

且这个权值有一个\(O(n)\)或者更好的复杂度求出。

求最值。

那可以用模拟退火。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#define ll long long
#define N 20 ll n,m; ll f[N][N]; ll in[N],dis[N]; inline ll find(){
ll ans = 0;
for(int i = 1;i <= n;++i)
dis[i] = 0;
for(int i = 2;i <= n;++i){
ll lim = 1e18;
for(int j = 1;j <= i - 1;++j){
if(lim > ((dis[in[j]] + 1) * f[in[j]][in[i]]))
lim = ((dis[in[j]] + 1) * f[in[j]][in[i]]),dis[in[i]] = dis[in[j]] + 1;
}
ans = ans + lim;
}
return ans;
} ll fans = 1e18; inline void sa(){
double T = 20000;
double eps = 1e-15;
while(T > eps){
ll z = -find();
int x,y;
x = rand() % n + 1;
y = rand() % n + 1;
fans = std::min(fans,-z);
std::swap(in[x],in[y]);
z = z + find();
if(z > 0 && exp(-z / T) * RAND_MAX < rand())
std::swap(in[x],in[y]);
T *= 0.996;
}
} int main(){
scanf("%lld%lld",&n,&m);
for(int i = 1;i <= N;++i)
for(int j = 1;j <= N;++j)
f[i][j] = 1e18;
for(int i = 1;i <= m;++i){
ll x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
f[x][y] = std::min(z,f[x][y]);
f[y][x] = std::min(z,f[y][x]);
}
for(int i = 1;i <= n;++i)
in[i] = i;
fans = find();
while(((double)(clock())/CLOCKS_PER_SEC)<0.5)
sa();
std::cout<<fans<<std::endl;
}

[NOIP2017 提高组] 宝藏的更多相关文章

  1. NOIP2017[提高组] 宝藏 题解

    解析 我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去 ...

  2. [NOIp2017提高组]宝藏

    #include<cstdio> #include<cctype> #include<algorithm> inline int getint() { regist ...

  3. 题解 [NOIP2017 提高组]宝藏

    传送门 这是蓝书上状压的例题啊,怎么会出现在模拟赛里 不过就算原题我也没把握写对 核心思路: 先令\(dp[s]\)为当前状态为\(s\)时的总花费最小值,\(cnt[s][i]\)为这个方案中由根节 ...

  4. 【题解】NOIP2017 提高组 简要题解

    [题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\ ...

  5. [NOIp2017提高组]列队

    [NOIp2017提高组]列队 题目大意 一个\(n\times m(n,m\le3\times10^5)\)的方阵,每个格子里的人都有一个编号.初始时第\(i\)行第\(j\)列的编号为\((i-1 ...

  6. JZOJ 5196. 【NOIP2017提高组模拟7.3】B

    5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  7. JZOJ 5197. 【NOIP2017提高组模拟7.3】C

    5197. [NOIP2017提高组模拟7.3]C Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  8. JZOJ 5195. 【NOIP2017提高组模拟7.3】A

    5195. [NOIP2017提高组模拟7.3]A Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. TCP三次握手四次挥手,通俗易懂版

    三次握手四次挥手 三次握手 其实很好理解,三次握手就是保证双手都有发送和接受的能力.那么最少三次才能验证完成 即----> 客户端发送---服务端收到----服务端发送-- 1.客户端发送 -- ...

  2. 《python编程:从入门到实践》课后习题及答案

    转载: <Python编程:从入门到实践>课后习题及答案-码农之家 (xz577.com) <Python编程:从入门到实践>课后习题及答案 - 信德维拉 - 博客园 (cnb ...

  3. webRTC中语音降噪模块ANS细节详解(二)

    上篇(webRTC中语音降噪模块ANS细节详解(一))讲了维纳滤波的基本原理.本篇先给出webRTC中ANS的基本处理过程,然后讲其中两步(即时域转频域和频域转时域)中的一些处理细节. ANS的基本处 ...

  4. linux updatedb: can not open a temporary file for `/var/lib/mlocate/mlocate.db'

    我们想查找我们最新创建的文件时,由于locate的数据库是每天更新.所以我们新创建的文件还没有被更新到系统的数据库. 这是需要手动更新数据库. 然后就可以查到. updatedb 输出 updated ...

  5. hdu 1394 Minimum Inversion Number(线段树or树状数组)

    题意: 给你N个数,N个数是0~N-1的一个全排列. 要求统计它的所有形式的逆序对的最小值.它的所有形式的意思是,不断将数组开头的第一个数放到数组的最后面. 逆序对:i<j且ai>aj 思 ...

  6. JAVA笔记9__异常/throw关键字/自定义异常/受检与非受检异常、assert关键字/StringBuffer、StringBuilder/代码国际化、动态文本

    /** * 异常:在程序中导致程序中断运行的一些指令 * 1.受检异常:编译期 * 2.非受检异常:运行期 * 异常处理过程分析: * 1.一旦产生异常,系统会自动产生一个异常类的实例化对象 * 2. ...

  7. Oracle创建表、删除表、修改表、字段增删改 语句总结

    创建表: create table 表名 ( 字段名1 字段类型 默认值 是否为空 , 字段名2 字段类型 默认值 是否为空, 字段名3 字段类型 默认值 是否为空, ...... ); 创建一个us ...

  8. kubernetes常见日志采集问题和解决方案分析

    传统日志与kubernetes日志对比 传统服务 目录固定 重启不会丢失 不用关注标准与错误日志输出 容器服务 节点不固定 重启服务会漂移 需要关注标准与错误日志输出 日志文件重启会丢失 日志目录不固 ...

  9. Fiddler抓包工具学习及使用

    一.Fiddler工作原理 Fiddler是位于客户端和服务器端之间的代理,客户端发送请求,fiddler会拦截该请求,再转发到服务器端,服务器端处理请求做出的响应,也要被fiddler拦截,fidd ...

  10. 谷粒 | 18 | Hystrix熔断器

    Spring Cloud调用接口过程 Spring Cloud 在接口调用上,大致会经过如下几个组件配合: Feign ----->Hystrix ->Ribbon ->Http C ...