PyTorch神经网络集成技术
PyTorch神经网络集成技术
create_python_neuropod
将任意python代码打包为一个neurood包。
create_python_neuropod(
neuropod_path,
model_name,
data_paths,
code_path_spec,
entrypoint_package,
entrypoint,
input_spec,
output_spec,
input_tensor_device = None,
default_input_tensor_device = GPU,
custom_ops = [],
package_as_zip = True,
test_input_data = None,
test_expected_out = None,
persist_test_data = True,
)
参数
neuropod_path
neuropod输出路径
model_name
model名称
data_paths
包含需要打包的任何数据文件的路径的dict列表。
Example:
[{
path: "/path/to/myfile.txt",
packaged_name: "newfilename.txt"
}]
code_path_spec
将要打包的所有代码的文件夹路径。请注意,*.pyc文件被忽略。
This is specified as follows:
[{
"python_root": "/some/path/to/a/python/root",
"dirs_to_package": ["relative/path/to/package"]
}, ...]
entrypoint_package
包含入口点的python包(例如,some.package.something). 它必须包含下面指定的entrypoint函数。
Entrypoint
entrypoint_包中包含的函数的名称。此函数必须返回一个可调用函数,该函数接受输入规范input_spec中指定的输入,并返回一个包含输出规范output_spec中指定的输出的dict。entrypoint函数将提供指向包含打包数据的目录的路径作为其第一个参数。
For example, a function like:
def neuropod_init(data_path):
def addition_model(x, y):
return {
"output": x + y
}
return addition_model
包含在包裹里“my.awesome.addition_model”本来
entrypoint_package='my.awesome.addition_model' and entrypoint='neuropod_init'
input_spec
指定模型输入的dict列表。对于每个输入,如果shape设置为None,则不对该形状进行验证。如果shape是元组,则根据该元组验证输入的维度。任何维度的值为“无”表示将不检查该维度。数据类型可以是任何有效的numpy数据类型字符串。
Example:
[
{"name": "x", "dtype": "float32", "shape": (None,)},
{"name": "y", "dtype": "float32", "shape": (None,)},
]
output_spec
指定模型输出的dict列表。有关详细信息,请参阅input_spec参数的文档。
Example:
[
{"name": "out", "dtype": "float32", "shape": (None,)},
]
input_tensor_device
default: None
dict将输入张量名称映射到模型希望它们在其上的设备。这可以是GPU或CPU。此映射中未指定的输入规格input_spec中的任何张量都将使用下面指定的默认输入张量设备default_input_tensor_device。
如果在推断时选择了GPU,则在运行模型之前,神经网络集成软件会将张量移动到适当的设备。否则,它将尝试在CPU上运行模型,并将所有张量(和模型)移到CPU上。
有关更多信息,请参阅load_neurood的文档字符串。
Example:
{"x": "GPU"}
default_input_tensor_device
default: GPU
输入张量的默认设备应该打开。这可以是GPU或CPU。
custom_ops
default: []
要包含在打包的neuropod中的自定义op共享库的路径列表。
注意:包括定制操作将您的neuropod绑定到定制操作为之构建的特定平台(如Mac、Linux)。用户有责任确保为正确的平台构建自定义操作。
Example:
["/path/to/my/custom_op.so"]
package_as_zip
default: True
是将neuropod打包为一个文件还是一个目录。
test_input_data
default: None
可选样本输入数据。这是一个将输入名称映射到值的dict。如果提供了这一点,则在包装后立即在隔离环境中运行推断,以确保成功创建了神经网络集成软件。如果提供了预期的测试test_expected_out,则必须提供。
如果推断失败,则引发ValueError。
test_expected_out
default: None
可选的预期输出。如果模型推断的输出与预期的输出不匹配,则引发ValueError。
Example:
{
"out": np.arange(5) + np.arange(5)
}
persist_test_data
default: True
可选地将测试数据保存在包装好的神经网络集成软件内。
PyTorch神经网络集成技术的更多相关文章
- Python神经网络集成技术Guide指南
Python神经网络集成技术Guide指南 本指南将介绍如何加载一个神经网络集成系统并从Python运行推断. 提示 所有框架的神经网络集成系统运行时接口都是相同的,因此本指南适用于所有受支持框架(包 ...
- TorchScript神经网络集成技术
TorchScript神经网络集成技术 create_torchscript_neuropod 将TorchScript模型打包为neuropod包. create_torchscript_neuro ...
- Keras神经网络集成技术
Keras神经网络集成技术 create_keras_neuropod 将Keras模型打包为神经网络集成包.目前,上文已经支持TensorFlow后端. create_keras_neuropod( ...
- Tensor:Pytorch神经网络界的Numpy
摘要:Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 本文分享自华为云社区<Tensor:P ...
- neurosolutions 人工神经网络集成开发环境 keras
人工神经网络集成开发环境 : http://www.neurosolutions.com/ keras: https://github.com/fchollet/keras 文档 http ...
- 使用Google-Colab训练PyTorch神经网络
Colaboratory 是免费的 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.关键是还有免费的GPU可以使用!用Colab训练PyTorch神经网络步骤如下: 1: ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- pytorch神经网络解决回归问题(非常易懂)
对于pytorch的深度学习框架,在建立人工神经网络时整体的步骤主要有以下四步: 1.载入原始数据 2.构建具体神经网络 3.进行数据的训练 4.数据测试和验证 pytorch神经网络的数据载入,以M ...
- 3DGIS与BIM集成集成技术及铁路桥梁可视化系统
3DGIS与BIM的集成技术 3DGIS与BIM的集成技术包括2部分:一是将Revit软件生成的BIM针对3DGIS的快速无损格式转换,这种转换包括几何信息(如形状.位置等信息)和属性信息(如建筑信息 ...
随机推荐
- hdu4277 DFS+SET
题意: 给你一些木棍,问你可以组成多少个三角形.. 思路: 直接深搜,N很小深搜无压力,也可以直接算出来,但我不会算.. #include<stdio.h> #in ...
- 手动绕过百度加固Debug.isDebuggerConnected反调试的方法
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78237571 1.调用Debug.isDebuggerConnected函数这种反 ...
- [转载] 关于Win7 x64下过TP保护的一些思路,内核层过保护,驱动过保护
首先特别感谢梦老大,本人一直没搞懂异常处理机制,看了他的教程之后终于明白了.在他的教程里我学到了不少东西.第一次在论坛发帖,就说说Win7 x64位下怎么过TP保护.如果有讲错的地方,还望指出.说不定 ...
- 使用 Azure Container Registry 储存镜像
Azure Container Registry(容器注册表)是基于 Docker Registry 2.0规范的托管专用 Docker 注册表服务. 可以创建和维护 Azure 容器注册表来存储与管 ...
- MySQL从库维护经验分享
前言: MySQL 主从架构应该是最常用的一组架构了.从库会实时同步主库传输来的数据,一般从库可以作为备用节点或作查询使用.其实不只是主库需要多关注,从库有时候也要经常维护,本篇文章将会分享几点从库维 ...
- c#RSA 私钥加签公钥解签
/// RSA签名 /// </summary> /// <param name="data">待签名数据</param> /// <pa ...
- [re模块、json&pickle模块]
[re模块.json&pickle模块] re模块 什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则 ...
- Java集合详解(一):全面理解Java集合
概述 Java所有集合类都在java.util包下,支持并发的集合在java.util.concurrent(juc)包下. 集合与数组区别: 数组大小是固定的,集合大小可以根据使用情况进行动态扩容. ...
- Django(31)模板中常用的过滤器
模版常用过滤器 在模版中,有时候需要对一些数据进行处理以后才能使用.一般在Python中我们是通过函数的形式来完成的.而在模版中,则是通过过滤器来实现的.过滤器使用的是|来使用. add 将传进来的参 ...
- alpine安装网络工具
telnet:busybox-extras net-tools: net-tools tcpdump: tcpdump wget: wget dig nslookup: bind-tools curl ...