On a broken calculator that has a number showing on its display, we can perform two operations:

  • Double: Multiply the number on the display by 2, or;
  • Decrement: Subtract 1 from the number on the display.

Initially, the calculator is displaying the number X.

Return the minimum number of operations needed to display the number Y.

Example 1:

Input: X = 2, Y = 3
Output: 2
Explanation: Use double operation and then decrement operation {2 -> 4 -> 3}.

Example 2:

Input: X = 5, Y = 8
Output: 2
Explanation: Use decrement and then double {5 -> 4 -> 8}.

Example 3:

Input: X = 3, Y = 10
Output: 3
Explanation: Use double, decrement and double {3 -> 6 -> 5 -> 10}.

Example 4:

Input: X = 1024, Y = 1
Output: 1023
Explanation: Use decrement operations 1023 times.

Note:

  1. 1 <= X <= 10^9
  2. 1 <= Y <= 10^9

Approach #1: Math. [Java]

class Solution {
public int brokenCalc(int x, int y) {
int count = 0;
while (y != x) {
if (x > y) return x - y + count; if (y % 2 != 0) y += 1;
else y /= 2; count++;
} return count;
}
}

  

Analysis:

First, let us see if the solution exists or not.

Clearly, we can keep doubling x till it goes beyond y. Then we can keep decreamenting x till it reaches y. Since the number of operations is not limited, so we conclude that a solution exists.

So now, consider an optimal solution (any solution with the minimal number of steps).

The path is nothing but a sequence of numbers that start at x and end at y.

Assume (x <= y). The other case is trivial

Case 1) Y is odd

Now, consider the last second element of the sequence (optimal path). Recall that we can only move in the sequence via the allowed moves (in the forward direction, we multiply by 2 or decreament by 1). Let us back track and see which move did we actually use to get to y. (obviously it has to be one of the two moves).

Now, the move could not have been multiplication by 2, or else y would have been a multiple of 2, which violates our assumption. So the only possible move is the decrement move. It means that the last second term of the sequence is indeed y + 1 if y is odd. (And there is no other possibility).

So now we just need to compute the optimal length to reach y + 1, and then add 1 to our answer to get the optimal path length for y. (Why? It happens because y + 1 lies in an optimal path and any subpath of the optimal path must be optimal or else it would violates our assumptions).

Case 2) Y is even. Say, y = 2m

First, let us sudy the worst case analysis of what is the maximum number that you would touch if you play optimally.

Clearly it is 2 * (y - 1), since in the worst case, you may end up starting at y - 1 and jumping to 2 * (y - 1) and then coming back. In all other cases, the jump will lead you to a number less than 2 * (y - 1) and you can easily come back to y one step at a time.

Let us denote 2 * ( y - 1 ) as jump_max.

Now, if y is even, we cannot say anything about the last second term of the sequence. (The move could be either multiplication or decrement).

However, let us see what happens if the last move was multiplication by 2.

Clearly, the last second element in this case is y / 2 = m

So we need to compute the optimal path length to reach m and then we can add 1 to our answer. (But this is valid only if we know that the last move was indeed multiplication.)

what if the last move was decrement?

In that case, the last second element become 2m + 1, (odd number), and by the 1st lemma, we conclude that the last thrid number is 2m + 2.

Now 2m + 2 is an even number so either a jump happens or it's descendant is 2m + 4. So we keep going to the rigth untill we find ak such that 2m + 2k is obtained be jumping from m+k. Clearly such a number exists as the largest number we can encounter is jump_max.

So, now the path looks like:

x .......(m + k) -> 2 (m + k) -> (2m + 2k - 2) -> ...... y

But, if you observe carefully, after we reach (m + k) we can decrement k times to reach m and then double to get y. This would cost us (k+1) operations + the cost to reach (m + k). However, the current cost is (1 + 2 (m + k) - 2m) = (2k + 1) operations + the cost to reach (m+k). Since the new cost is lower, this violates our assumption that the original sequence was an optimal path. Therefore we have a contradiction and we conclude that the last move could not have been decrement.

Conclusion:

If y is odd, we know that the last number to be reached before y is (y + 1) (in the optimal path)

If y is even, we know that the last number to be reached before y is y / 2 (in the optimal path)

So finally we have recursive relation.

if (x >= y)

cost(x, y) = x - y

if (x < y)

cost(x, y) = 1 + cost(x, y+ 1) if y is odd

cost(x, y) = 1 + cost(x, y / 2) if y is even

This analysis may be easy to understand:

Trying to prove that if Y is even, the last operation must be doubling:

hypothesis: there can be one or more decrement from Y + 1 to Y in the shortest path, where last bit of Y is 0

since last bit of Y + 1 is 1, it must be decrement from Y + 2 (doubling can never make an 1 on last bit)

two options at Y + 2:

decrement from Y + 3, it's the same as the starting point Y + 1 and Y:

doubling from (Y+2)/2 three moves used from (Y+2)/2 to Y: double to Y + 2, decrement to Y+1, decrement to Y, while there is a shorter path: decrement to Y / 2, double to Y.

there we get a contradiction to the hypothesis

so the hypothesis is false

hence, there can be none decrement move(s) from Y + 1 to Y in the shortest path is last bit of Y is 0.

Reference:

https://leetcode.com/problems/broken-calculator/discuss/236565/Detailed-Proof-Of-Correctness-Greedy-Algorithm

991. Broken Calculator的更多相关文章

  1. LC 991. Broken Calculator

    On a broken calculator that has a number showing on its display, we can perform two operations: Doub ...

  2. 【leetcode】991. Broken Calculator

    题目如下: On a broken calculator that has a number showing on its display, we can perform two operations ...

  3. 【LeetCode】991. Broken Calculator 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  4. [Swift]LeetCode991. 坏了的计算器 | Broken Calculator

    On a broken calculator that has a number showing on its display, we can perform two operations: Doub ...

  5. 123th LeetCode Weekly Contest Broken Calculator

    On a broken calculator that has a number showing on its display, we can perform two operations: Doub ...

  6. A Broken Calculator 最详细的解题报告

    题目来源:A Broken Calculator 题目如下(链接有可能无法访问): A Broken Calculator Time limit : 2sec / Stack limit : 256M ...

  7. 【LeetCode】Broken Calculator(坏了的计算器)

    这道题是LeetCode里的第991道题. 题目描述: 在显示着数字的坏计算器上,我们可以执行以下两种操作: 双倍(Double):将显示屏上的数字乘 2: 递减(Decrement):将显示屏上的数 ...

  8. 算法与数据结构基础 - 贪心(Greedy)

    贪心基础 贪心(Greedy)常用于解决最优问题,以期通过某种策略获得一系列局部最优解.从而求得整体最优解. 贪心从局部最优角度考虑,只适用于具备无后效性的问题,即某个状态以前的过程不影响以后的状态. ...

  9. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

随机推荐

  1. 重复代码的克星,高效工具 VSCode snippets 的使用指南

    为什么要用 snippets(代码段)? 不管你使用何种编程语言,在我们日常的编码工作中,都会存在有大量的重复代码编写,例如: 日志打印: console.log,log.info('...') 输出 ...

  2. [msys2]集成到右键菜单

    集成到右键菜单 在资源管理器中,空白处右键(right-clicking on folder backround in Windows Explorer)会弹出菜单,其中有如"在此处打开cm ...

  3. HDOJ-2087(KMP算法)

    剪花布条 HDOJ-2087 本题和hdoj-1686相似,唯一不同的是这里的子串一定要是单独的.所以在确定有多少个子串时不能用前面的方法.而是在循环时,只要找到一个子串,i就不是++,而是+=子串的 ...

  4. day1_安装及建立数据库和表

    #第一份数据库及表create database library; use library; create table book( id int primary key, book_name char ...

  5. 痞子衡嵌入式:盘点国内MCU级RISC-V内核IP厂商

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是国内MCU级RISC-V内核IP厂商. 自RISC-V指令集2010年诞生以来,业界普遍认为,RISC-V将会改变现有的由Arm和Int ...

  6. 攻防世界 reverse easy_Maze

    easy_Maze 从题目可得知是简单的迷宫问题 int __cdecl main(int argc, const char **argv, const char **envp) { __int64 ...

  7. 14、MyBatis教程之全部(包括所有章节)

    MyBatis 3.5.5 教程 1.环境准备 jdk 8 + MySQL 5.7.19 maven-3.6.1 IDEA 学习前需要掌握: JDBC MySQL Java 基础 Maven Juni ...

  8. Spring笔记(五)

    Spring 事务操作 一.事务(概念) 1. 什么是事务 事务是数据库的最基本单元,逻辑上的一组操作,要么都成功,如果有一个失败,那么所有的操作都失败 典型场景: lucy转账100元给mary l ...

  9. 深度学习---1cycle策略:实践中的学习率设定应该是先增再降

    深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Lesli ...

  10. [Azure DevOps] 如何安装并配置 Build Agent

    1. 编译服务器 在 Azure Pipelines 中至少需要一个编译服务器的 Agent 才能编译代码或发布软件.Azure DevOps 本身已经提供了一个 Agent,但出于各种理由(需要特殊 ...