[2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)
题目大意
给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列。
其中,n满足小于500000,序列中的正整数小于10^9
题解(引自mzx神犇的题解)
本次test跪0了,尴尬
解法1(40分)
考虑dp
设到第i个数为止,序列中数全部<=j的最小代价为f[i][j]
可以推出f[i][j]=min{f[i-1][j]+|ai-j|,f[i][j-1]}
解法2(60分)
是对于第一个dp思路的优化
既然数字是固定的,可以离散化,降低空间时间复杂度
解法3(100分)
斜率优化dp,用线段树维护斜率
解法4(100分,引自zyz大神的解法)
玄学的单调栈问题
由于区间中的数是单调不减的,所以最后得出的序列一定是一段一段的各个数值相等的序列区间
而要最小化代价,可以取这些区间中的中位数作为标准来修改每个区间,并用单调栈求解最优的区间划分
还需要用动态开点线段树维护区间中位数
orz
#include <stdio.h>
#include <string.h> const int MAXN = 5e5 + ;
const int INF = 1e9 + ; inline int abs(int x){
return x < ? -x : x;
} int Rin(){
int x = , c = getchar(), f = ;
for(; c < || c > ; c = getchar())
if(!(c ^ ))
f = -;
for(; c > && c < ; c = getchar())
x = (x << ) + (x << ) + c - ;
return x * f;
} namespace Arcueid{
struct Node{
Node *l, *r;
int s;
Node(){}
Node(Node *_l, Node *_r, int _s) : l(_l), r(_r), s(_s) {}
}*_nil = new Node(), *nil = (*_nil = Node(_nil, _nil, ), _nil), pool[MAXN * ], *top = pool;
Node *reborn(){
*top = Node(nil, nil, );
return top++;
}
void death(Node *&pr, Node *pl, int l, int r, int v){
pr = reborn(); *pr = *pl; pr->s++;
if(l + < r){
int mid = (l + r) >> ;
v < mid ? death(pr->l, pl->l, l, mid, v) : death(pr->r, pl->r, mid, r, v);
}
}
int secret(Node *pr, Node *pl, int l, int r, int k){
if(l + == r)return l;
int c = pr->l->s - pl->l->s, mid = (l + r) >> ;
return c < k ? secret(pr->r, pl->r, mid, r, k - c) : secret(pr->l, pl->l, l, mid, k);
}
int feel(Node *pr, Node *pl){
int c = pr->s - pl->s;
return secret(pr, pl, , INF, (c + ) >> );
}
} Arcueid::Node *rt[MAXN] = {Arcueid::nil}; namespace moon{
void cause(){
int n, a[MAXN], stay = , night[MAXN], shiki[MAXN]; // freopen("chen.in", "r", stdin);
// freopen("chen.out", "w", stdout); n = Rin();
for(int i = ; i <= n; i++){
a[i] = Rin();
Arcueid::death(rt[i], rt[i-], , INF, a[i]);
for(; stay > && Arcueid::feel(rt[i], rt[night[stay - ]]) < shiki[stay - ]; stay--);
shiki[stay] = Arcueid::feel(rt[i], rt[night[stay-]]);
night[stay++] = i;
}
long long ans = ;
for(int i = ; i < stay; i++)
for(int j = night[i - ] + ; j <= night[i]; j++)
ans += abs(a[j] - shiki[i]); printf("%lld\n", ans);
// fclose(stdin);
// fclose(stdout);
}
} int main(){
moon::cause();
return ;
}
解法5(100分)
其实这个解法更玄
但最简洁的往往是最好的
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; inline int read(){
int x = , c = getchar(), f = ;
for(; c < || c > ; c=getchar())
if(!(c ^ ))
f = -;
for(; c > && c < ; c=getchar())
x = (x << ) + (x << ) + c - ;
return x * f;
} long long ans = ;
priority_queue<int> q; int main(){
int n = read();
for(int i = ; i <= n; i++){
int x = read();
q.push(x);
ans += q.top() - x;
if(x ^ q.top())
q.pop();
}
printf("%lld\n", ans);
return ;
}
[2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)的更多相关文章
- BZOJ5059 前鬼后鬼的守护 【堆扩展】*
BZOJ5059 前鬼后鬼的守护 Description 八云紫的式神八云蓝有一张符卡名为[式神-前鬼后鬼的守护],这张符卡的弹幕为BOSS从两侧向自机发射大玉,大玉后面跟着一些小玉,形成一个&quo ...
- BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学
https://www.lydsy.com/JudgeOnline/problem.php?id=5059 题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小. 如 ...
- BZOJ 5059 前鬼后鬼的守护
题解: 解法一:用函数斜率什么的,不会,留坑 解法二: 某一个序列都变成一个值那么中位数最优 加入一个元素,与前面那一段区间的中位数比较 x>=mid什么事也不做 x<mid合并两端区间 ...
- 探究C语言中的前++和后++
小波带您探究c语言中的前++与后++: 欢迎吐槽,欢迎加QQ463431476. 欢迎关注! 现在来探究: 咱们先看第一个 i被赋值0,i++(后++)并没有输出1. 现在i被赋值0,++i,也 ...
- HMM 自学教程(七)前向后向算法
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- STL——前闭后开区间表示法和function call 操作符
前开后闭开区间表示法[) 任何一个STL算法,都需要获得由一对迭代器(泛型指针)所标示的区间,用以表示操作范围,这一对迭代器所标示的是个所谓的前闭后开区间,以[first,last)表示,也就是说,整 ...
- HMM 前向后向算法(转)
最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- jquery取前、后、父、子元素
前.prev(); 后.next(); 父.parent(); 子.children(); 注意:前的前是.prev().prev(),例如前元素无i,但前的前的i元素有i,不能写成.prev('i' ...
随机推荐
- IDCM项目学习笔记
项目介绍: IDCM:Internet Data center monitoring 网络数据中心监控平台 IRP:Information Resource planing 信息资源规划 1.设置表中 ...
- Session中load/get方法的详细区别
Session.load/get方法均可以根据指定的实体类和id从数据库读取记录,并返回与之对应的实体对象.其区别在于: 如果未能发现符合条件的记录,get方法返回null,而load方法会抛出一个O ...
- rabbitmq性能优化之Consumer utilisation
如下所示,每个rabbitmq队列除了发布和消费吞吐量外,还有一个评价MQ队列效率的更加重要的指标Consumer utilisation ,如下: 在最佳利用率情况下,这个值能够达到100%,并且生 ...
- 适应手机端的jQuery图片滑块动画DEMO演示
在线预览 下载地址 实例代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "htt ...
- 使用CSS把ul,li制作成表格
查看效果:http://hovertree.com/texiao/css/7.htm 具体实现请看样式部分. 完整代码: <!DOCTYPE html> <html> < ...
- http 缓存相关学习
在面试中被问到好多缓存的问题 200 cache cookies 304(304 和 200 cache的区别) cookies在什么时候创建 发送 等等 自己回答的并不是很好 这次仔细的学习 ...
- 3D banner(CSS3+HTML5)
1.这是一篇 3Dbanner制作的简易流程,支持高版本的chrome和firefox浏览器,俩浏览器显示可能会有些差异 2.没有兼容性代码,因为仅仅只是熟悉流程,希望小伙伴们自己改善哈(>﹏& ...
- director.js:客户端的路由---简明中文教程
1.引子 最近学用director.js,那是相当的简单易学易使用.不过开始学的时候,搜搜过后,却没有发现相关的中文教程.于是决定硬啃E文,翻译备用的同时也当是给自己上课并加深对它的理解. direc ...
- 【原】iOS动态性(三) Method Swizzling以及AOP编程:在运行时进行代码注入
概述 今天我们主要讨论iOS runtime中的一种黑色技术,称为Method Swizzling.字面上理解Method Swizzling可能比较晦涩难懂,毕竟不是中文,不过你可以理解为“移花接木 ...
- IT人创业之融资方式 - 创业与投资系列文章
对于想要创业的IT人,最基本的就是需要资金和团队.笔者在经历了自己制定的职业道路之后(见文:IT从业者的职业道路(从程序员到部门经理) - 项目管理系列文章),进行过投资(见文:IT人经济思维之投资 ...