题目传送门

题目大意

给出\(n,k\),以及\(w_{1,2,..,n}\),定义一个集合\(S\)的权值\(W(S)=|S|\sum_{x\in S} w_x\),定义一个划分\(R\)的权值为\(\sum_{S\in R} W(S)\)。求出每种划分权值之和。

思路

这个题目有两种方法。一种就是直接从一眼式中暴推出答案,另外一种就是考虑组合意义,这里着重介绍后面一种。

我们发现\(W(S)\)实际上就等价于在\(S\)中的元素会对该集合中每个元素提供\(w_i\)的贡献。于是,我们考虑一个点会产生的贡献,首先对它自己会有\(w_i\begin{Bmatrix}n\\k\end{Bmatrix}\)的贡献,对其他点有\((n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}w_i\)的贡献。这里解释一下后面那个,可以理解为先把\(n-1\)个分到\(k\)个盒子里(如果要产生贡献肯定要有跟它在同一个集合的元素),然后我可以加到这\(k\)里面任意一个,一共就是\(n-1\)个元素。

于是,我们得到答案就是:

\[(\begin{Bmatrix}n\\k\end{Bmatrix}+(n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix})(\sum_{i=1}^{n} w_i)
\]

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 200005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,k,w[MAXN],fac[MAXN],ifac[MAXN];
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int binom (int a,int b){return a >= b ? mul (fac[a],mul (ifac[b],ifac[a - b])) : 0;}
int qkpow (int a,int b){int res = 1;for (;b;b >>= 1,a = mul(a,a)) if (b & 1) res = mul (res,a) % mod;return res;}
int Sitelin (int n,int m){int res = 0;for (Int i = 0,tmp;i <= m;++ i) tmp = mul (binom (m,i),qkpow (i,n)),m - i & 1 ? (res = dec (res,tmp)) : (res = add (res,tmp));return 1ll * res * ifac[m] % mod;} signed main(){
read (n,k);fac[0] = 1;int sum = 0;
for (Int i = 1;i <= n;++ i) read (w[i]),sum = add (sum,w[i]);
for (Int i = 1;i <= k;++ i) fac[i] = mul (fac[i - 1],i);ifac[k] = qkpow (fac[k],mod - 2);for (Int i = k;i;-- i) ifac[i - 1] = mul (ifac[i],i);
write (mul (sum,add (Sitelin (n,k),mul (n - 1,Sitelin (n - 1,k))))),putchar ('\n');
return 0;
}

题解 CF961G 【Partitions】的更多相关文章

  1. 题解 [CF961G] Partitions

    题面 解析 首先我们观察这个定义, 可以发现每个元素在统计答案时是平等的, 也就是单个元素的权值对答案没有特别的影响. 设元素权值为\(w[i]\), 那么我们就可以知道答案是\(\sum_{i=1} ...

  2. CF961G Partitions(第二类斯特林数)

    题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...

  3. CF961G Partitions

    传送门 luogu 显然每个数的贡献可以一起算感性理解一下,于是答案就是权值总和乘以每个数被算了几次 那个"集合大小为\(|S|\)的集合权值为权值和乘\(|S|\)",可以看成一 ...

  4. CF961G Partitions(第二类斯特林数)

    传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...

  5. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  6. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  7. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  8. 【题解】Codeforces 961G Partitions

    [题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...

  9. 【cf961G】G. Partitions(组合意义+第二类斯特林数)

    传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...

随机推荐

  1. 原生 JS 与 jQuery 中的 AJAX

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 最大的优点是在不重新加载整个页面的情况下,可以与服务器交换数据并更 ...

  2. 🏆【JVM技术专区】「难点-核心-遗漏」TLAB内存分配+锁的碰撞(技术串烧)!

    JVM内存分配及申请过程 当使用new关键字或者其他任何方式进行创建一个类的对象时,JVM虚拟机需要为该对象分配内存空间,而对象的大小在类加载完成后已经确定了,所以分配内存只需要在Java堆中划分出一 ...

  3. VSCode添加某个插件后,Python 运行时出现Segmentation fault (core dumped) 解决办法

    在VSCode添加某个插件后,Debug出现Segmentation fault (core dumped) 解决方案,在当前environment下运行: conda update --all

  4. Photoshop 各混合模式 RGB 是如何计算的

    原文链接:https://www.jb51.net/photoshop/249182.html 1.正常模式(Normal) 默认模式,显示混合色图层的像素,没有进行任何的图层混合.这意味着基色图层( ...

  5. 字符串截取子串(Java substring , indexOf)

    前言 因为之前java课设做的是股票分析系统,我找的接口返回的是一个.csv文件,因为这种文件里面的数据是以逗号分隔的,所以要对数据进行分析的时候需要截取子串,并且以逗号作为截取的标志.所以接下来就说 ...

  6. openswan专栏序言

    openswan专栏序言 "一杯茶,一包烟,一个bug解一天!!!". ​ 2020年春季,正值新冠病毒在全球肆虐之际,美国的疫情已经相当的严峻,每天仍以3万速度狂奔.而国内的疫情 ...

  7. Playfield 类方法的注释

    前言 本篇随笔的底包采用的是百度炉石兄弟吧20200109折腾版中自带的 routines 文件. 本次仅为绝大多数方法添加 xml 注释和简单解析,没有具体解析与重构. Playfield 类方法众 ...

  8. [第三篇]——CentOS Docker 安装之Spring Cloud直播商城 b2b2c电子商务技术总结

    CentOS Docker 安装 Docker 支持以下的 64 位 CentOS 版本: CentOS 7 CentOS 8 更高版本... 使用官方安装脚本自动安装 安装命令如下: curl -f ...

  9. rune和byte在处理字符/字符串中的应用.

    rune和byte在处理字符/字符串中的应用. 定义: rune是int32的别名,-2147483648->2147483647,常用来表示UNICODE字符集,可以用来处理包含中文/非中文的 ...

  10. linux关于profile 、bashrc 、.bash_profile、.bashrc的区别

    linux关于profile .bashrc ..bash_profile..bashrc的区别 - /etc/profile /etc/bashrc ~/.bash_profile ~/.bashr ...