题解 Prime
考场上魔改了一下线性筛,觉得要筛到 \(\frac{R}{2}\) 就没让它跑
其实正解就是这样,只不过由于接下来类似埃氏筛的过程只要筛到根号就行了
- 线性筛有的时候其实并不需要筛到 \(\frac{n}{2}\),如果接下来需要枚举倍数,注意可能只需要枚举到根号就行了
发现 \(R\) 的范围很大,但 \(R-L\) 的范围有限
而 \(L\) 的范围只有 \(1e7\),可以筛出质数来,再用类似埃氏筛的方法筛掉 \([L, R]\) 内的类质数
然后枚举一遍统计个数就好了
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 10000010
#define ll long long
#define reg register int
#define rll register long long
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline ll read() {
ll ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
ll l, r, k;
int pri[N], pcnt, ans;
bool npri[N];
namespace force{
ll ans;
void solve() {
for (ll i=l; i<=r; ++i) {
for (ll j=2; j<=min(i-1, k); ++j)
if (!(i%j)) goto jump;
//printf("%lld,%lld\n", i, (ans^=i));
//printf("%lld ", i);
ans^=i;
jump: ;
}
//printf("\n");
printf("%lld\n", ans);
exit(0);
}
}
namespace task1{
void solve() {
for (reg i=2,limr=r,limk=k; i<=limr; ++i) {
if (i<=limk && !npri[i]) pri[++pcnt]=i;
for (reg j=1; j<=pcnt&&1ll*i*pri[j]<=r; ++j) {
npri[i*pri[j]]=1;
if (!(i%pri[j])) break;
}
}
for (reg i=l,limr=r; i<=limr; ++i)
if (!npri[i]) ans^=i; //, cout<<i<<' '; cout<<endl;
printf("%d\n", ans);
exit(0);
}
}
namespace task2{
void solve() {
ll ans=0;
for (rll i=l; i<=r; ++i) ans^=i;
printf("%lld\n", ans);
exit(0);
}
}
namespace task3{
bool nspr[N];
void solve() {
for (reg i=2,lim=min((ll)(sqrt(r)),k); i<=lim; ++i) {
if (!npri[i]) pri[++pcnt]=i;
for (reg j=1; j<=pcnt&&1ll*i*pri[j]<=lim; ++j) {
npri[i*pri[j]]=1;
if (!(i%pri[j])) break;
}
}
for (reg i=1; i<=pcnt; ++i) {
//cout<<"i: "<<i<<' '<<pri[i]<<endl;
for (rll j=max((l-1)/pri[i]+1,2ll),lim=r/pri[i]; j<=lim; ++j) {
//cout<<j*pri[i]<<' '<<j*pri[i]-l<<endl;
nspr[j*pri[i]-l]=1; //, cout<<j*pri[i]<<endl;
}
}
ll ans=0;
//for (int i=0; i<=100; ++i) cout<<nspr[i]<<' '; cout<<endl;
for (reg i=0,lim=r-l+1; i<lim; ++i) if (!nspr[i]) ans^=(l+i);
printf("%lld\n", ans);
exit(0);
}
}
signed main()
{
l=read(); r=read(); k=read();
//force::solve();
if (k==1) task2::solve();
else if (r<=1000) force::solve();
else if (r<=(ll)(1e7)) task1::solve();
else task3::solve();
return 0;
}
题解 Prime的更多相关文章
- 【数论】8.30题解-prime素数密度 洛谷p1835
prime 洛谷p1835 题目描述 给定区间[L, R](L <= R <= 2147483647, R-L <= 1000000),请计算区间中 素数的个数. 输入输出 输入 两 ...
- 【题解】UVA10140 [Prime Distance]
[题解]UVA10140 Prime Distance 哈哈哈哈\(miller-rabbin\)水过去了哈哈哈 还能怎么办呢?\(miller-rabbin\)直接搞.枚举即可,还跑得飞快. 当然此 ...
- 【题解】CF45G Prime Problem
[题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...
- CF912E Prime Gift题解(搜索+二分答案)
CF912E Prime Gift题解(搜索+二分答案) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1314956 洛谷题目链接 $ $ CF题目 ...
- HDU 1016 Prime Ring Problem 题解
Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ... ...
- poj2689 Prime Distance题解报告
题目戳这里 [题目大意] 给定一个区间[L,R],求区间内的质数相邻两个距离最大和最小的. [思路分析] 其实很简单呀,很明显可以看出来是数论题,有关于质数的知识. 要注意一下的就是L和R的数据范围都 ...
- 题解-hdu2866 Special Prime
Problem hdu-2866 题意:求区间\([2,L]\)有多少素数\(p\)满足\(n^3+pn^2=m^3\),其中\(n,m\)属于任意整数 Solution 原式等价于\(n^2(p+n ...
- PAT甲题题解-1059. Prime Factors (25)-素数筛选法
用素数筛选法即可. 范围long int,其实大小范围和int一样,一开始以为是指long long,想这就麻烦了该怎么弄. 而现在其实就是int的范围,那难度档次就不一样了,瞬间变成水题一枚,因为i ...
- LintCode 896. Prime Product 简明题解
Given a non-repeating prime array arr, and each prime number is used at most once, find all the prod ...
随机推荐
- buu crackRTF
一.无壳,拖入ida,静态编译一下 整体逻辑还是很清晰,这里我的盲区是那个加密函数,是md5,没看出来,内存地址看错了,之前用黑盒动调一下,发现猜不出来,看某位wp发现有的老哥,直接sha1爆破的,狠 ...
- 「CF1208G」 Polygons
「CF1208G」 Polygons 似乎我校神犇在很久以前和我提过这题? 首先有一点显而易见:这 \(k\) 个多边形肯定至少有一个公共的顶点.假设我们将此点定义为起点. 那么对于一个正 \(n\) ...
- Django基础012--接口开发
全局参数(get,post,put,delete) 接口:/api/parameter GET:获取全局参数的所有数据 POST:创建全局参数 PUT:更新全局参数 DELETE:删除全局参数 1.创 ...
- TypeScript——原始数据类型
TypeScript原始数据类型 原始数据类型包括:布尔值.数值.字符串.null.undefined. Symbol.BigInt. 布尔值: let isDone: boolean = false ...
- 微信小程序云开发-添加数据
一.数据的添加 使用add方法添加数据 添加完成后,在数据库中查询,可以看到数据库中添加了1条数据,此时添加的数据系统自动添加了_openid 将[添加]功能写到对应的方法中 wxml页面中,点击[添 ...
- js中的 true 与 false
可判断为 false 的情况: 0,-0,NaN,undedined,"",false,null,缺省的值 可判断为 true 的情况: 除false的其他情况均可,包括负数.&q ...
- js循环修改对象内层元素的值
问题:存在一个对象,该对象的内部元素也为对象,子对象的元素也为对象,...(即多层对象构成的对象,具体如下),那么应该如何修改最内层元素的值(如 obj.a.a.a = 5)? var obj = { ...
- Gitea 1.4.0 目录穿越导致命令执行漏洞
复现 POST /vulhub/repo.git/info/lfs/objects HTTP/1.1 Host: 192.168.49.2:3000 Accept-Encoding: gzip, de ...
- 等Excel工作簿关闭后自动加密压缩备份2019年10月9日.ahk
;; 等Excel工作簿关闭后自动加密压缩备份2019年10月9日.ahk;; 腾讯QQ号 595076941; 作者:徐晓亮(weiyunwps618); 写作日期:2019年5月15日; 版本号: ...
- kivy中文编程指南
Kivy中文编程指南,由网友翻译后,我整理目录及页面形式,便了浏览查阅. 点击下载