P7990-[USACO21DEC]Closest Cow Wins S【堆,贪心】
正题
题目链接:https://www.luogu.com.cn/problem/P7990
题目大意
数轴上有\(k\)个点是草地,每个草地有不同收益,\(m\)个点是地方的点,现在你要放置\(n\)个我方的点,不能和敌方的点重合。
如果一个草地离最近的我方的点距离严格小于最近的敌方点距离,那么这个草地被占领。
给出敌方点和草地坐标(保证两两不同),求占领草地的最大收益和 。
\(1\leq n,m,k\leq 2\times10^5,1\leq x\leq 10^9\)
解题思路
考虑在两个敌方点之间我们最多放两个己方点,又因为敌方点肯定和草地不重合所以放两个肯定能占领这之间的所有草地。
而且不能放敌方点的限制可以无视因为放敌方点没有任何收益。
然后我们再考虑如何算出两个敌方点之间放一个我方点的最大收益。
显然之间考虑位置很麻烦,我们可以考虑对于一个草地作为最右边的草地,那么一头牛能占领的最左边的草地,这个可以直接用一个双指针维护。
这样我们就得出了每一段放一头/两头牛的收益,记为\(c_{i,1/2}\)。
此时我们考虑暴力贪心开始把所有的\(c_{i,1}\)放进堆里,每次取出的如果是一个\(c_{i,1}\)那么把\(c_{i,2}-c_{i,1}\)再放进堆里做\(n\)次就可以了。
看起来这个贪心好像是错的,因为如果\(c_{i,2}\)远大于\(c_{i,1}\)时我们就可能牺牲第一次取小的来取第二次的。
但是实际上我们用在上面那个过程中不难发现,肯定是有\(c_{i,1}\geq c_{i,2}-c_{i,1}\)的(因为直接放在左右地方牛的旁边贡献大的那个位置就至少有一半的收益)。
时间复杂度:\(O(n\log n)\)
当然我推荐的做法是无脑wqs二分+dp
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define mp(x,y) make_pair(x,y)
using namespace std;
const ll N=2e5+10;
struct node{
ll p,t;
}a[N];
ll n,m,k,ans,s[N],f[N],w[N],v[N];
priority_queue<pair<ll,ll> > q;
bool cmp(node x,node y)
{return x.p<y.p;}
signed main()
{
scanf("%lld%lld%lld",&k,&m,&n);
for(ll i=1;i<=k;i++)
scanf("%lld%lld",&a[i].p,&a[i].t);
for(ll i=1;i<=m;i++)scanf("%lld",&f[i]);
sort(a+1,a+1+k,cmp);
sort(f+1,f+1+m);f[0]=-1e9;f[m+1]=2e9;
ll now=1,l=1,las=0,maxs=0;
for(ll i=1;i<=k;i++){
s[i]=s[i-1]+a[i].t;
while(l<=m&&f[l]<a[i].p){
w[l]=maxs;v[l]=s[i-1]-s[las];
las=i-1;now=i;maxs=0;l++;
}
ll L=f[l-1],R=f[l];
while((a[i].p-a[now].p)*2>=R-L)now++;
maxs=max(maxs,s[i]-s[now-1]);
}
w[l]=maxs;v[l]=s[n]-s[las];
for(ll i=0;i<=k+1;i++)
q.push(mp(w[i],i));
for(ll i=1;i<=n;i++){
pair<ll,ll> w=q.top();
ans+=w.first;q.pop();
if(w.second)q.push(mp(v[w.second]-w.first,0));
}
printf("%lld\n",ans);
return 0;
}
P7990-[USACO21DEC]Closest Cow Wins S【堆,贪心】的更多相关文章
- [USACO12FEB]牛券Cow Coupons(堆,贪心)
[USACO12FEB]牛券Cow Coupons(堆,贪心) 题目描述 Farmer John needs new cows! There are N cows for sale (1 <= ...
- BZOJ_2802_[Poi2012]Warehouse Store_堆+贪心
BZOJ_2802_[Poi2012]Warehouse Store_堆+贪心 Description 有一家专卖一种商品的店,考虑连续的n天. 第i天上午会进货Ai件商品,中午的时候会有顾客需要购买 ...
- BZOJ_1150_[CTSC2007]数据备份Backup_堆+贪心
BZOJ_1150_[CTSC2007]数据备份Backup_堆+贪心 Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏 ...
- poj3045 Cow Acrobats (思维,贪心)
题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...
- P4053 [JSOI2007]建筑抢修 堆贪心
思路:堆贪心 提交:1次 题解: 先按时间\(sort\),然后如果能修就直接扔堆里,不能修取堆顶比一下时间长短,把时间短的扔进堆: #include<cstdio> #include&l ...
- HDU5124lines题解-堆+贪心的一个新方法
题目链接 https://cn.vjudge.net/problem/HDU-5124 胡扯 感觉说新方法好像有点不太好,但是翻了十几篇博客都是清一色离散化之类的... 为什么会做这道题呢?因为前几天 ...
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- 【BZOJ1623】 [Usaco2008 Open]Cow Cars 奶牛飞车 贪心
SB贪心,一开始还想着用二分,看了眼黄学长的blog,发现自己SB了... 最小道路=已选取的奶牛/道路总数. #include <iostream> #include <cstdi ...
- BZOJ 1029: [JSOI2007]建筑抢修 堆+贪心
1029: [JSOI2007]建筑抢修 Description 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有 ...
随机推荐
- Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)
Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...
- 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)
题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...
- NFLSOJ 1072 - 【2021 六校联合训练 NOIP #1】异或(FWT+插值)
题面传送门 一道非常不错的 FWT+插值的题 %%%%%%%%%%%% 还是那句话,反正非六校的看不到题对吧((( 方便起见在下文中设 \(n=2^d\). 首先很明显的一点是这题涉及两个维度:异或和 ...
- Linux 安装和使用 RAR工具
RAR 安装 方法一.通过apt命令安装 rar 和 unrar 未安装 unrar 的情况下,提取 RAR 文件会报出"未能提取"错误 Ubuntu 安装 rar和 unrar( ...
- python12对象初
- excel-合并多个Excel文件--VBA合并当前目录下所有Excel工作簿中的所有工作表
在网上找EXCEL多文件合并的方法,思路: 一.Linux 或者window+cmder,直接用命令行cat合并EXCEL文件,但是,需要安装辅助东西才能直接处理(也许也不可以,但是,可以用文件格式转 ...
- 7. Minimum Depth of Binary Tree-LeetCode
难度系数:easy /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; ...
- Hadoop入门 概念
Hadoop是分布式系统基础架构,通常指Hadoop生态圈 主要解决 1.海量数据的存储 2.海量数据的分析计算 优势 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出 ...
- 学习java 7.25
学习内容: 特殊边框 1. TitledBorder:它的作用并不是直接为其他组件添加边框,而是为其他边框设置标题,创建该类的对象时,需要传入一个其他的Border对象; 2. CompoundBor ...
- day32 HTML
day32 HTML 什么是前端 只要是跟用户打交道的界面都可以称之为前端 # eg:电脑界面, 手机界面,平板界面, 什么是后端? eg:python, java,php,go, 不跟用户直接打交道 ...