可以发现,如果我们枚举每个理想亮度 \(X\) 然后再求在这个理想亮度情况下的答案是非常难维护的。

不妨反过来,考虑每个位置 \(i, i + 1\) 之间对每个理想亮度 \(X\) 减少次数的贡献。

不难发现需要分两种情况讨论:

  • 若 \(a_i < a_{i + 1}\),那么此时只会对 \(a_i + 2 \sim a_{i + 1}\) 产生贡献 \(1, 2, \cdots a_{i + 1} - a_i - 1\)

  • 若 \(a_i > a_{i + 1}\),那么此时只会对 \(a_{i} + 2 \sim m, 1 \sim a_{i + 1}\) 产生贡献 \(1, 2, \cdots m - (a_{i} - a_{i + 1} - 1)\)

注意到只需要最后查询一次,每次修改只需添加一段等差数列直接使用二次差分即可。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 1e5 + 5;
int n, m, ans, del, a[N], d1[N], d2[N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void update(int x, int y) {
if(x < y) ++d1[x + 2], --d1[y + 1], d2[y + 1] -= y - x - 1;
else ++d1[x + 2], d1[1] += m - x, d1[2] += 1 - (m - x), --d1[y + 1], d2[y + 1] -= m + y - x - 1;
}
signed main() {
n = read(), m = read();
rep(i, 1, n) a[i] = read();
rep(i, 1, n - 1) ans += (a[i] > a[i + 1]) * m + a[i + 1] - a[i];
rep(i, 1, n - 1) update(a[i], a[i + 1]);
rep(i, 1, m) d1[i] += d1[i - 1];
rep(i, 1, m) d1[i] += d1[i - 1] + d2[i];
rep(i, 1, m) del = max(del, d1[i]);
printf("%lld", ans - del);
return 0;
}

当需要考虑在每种情况下答案分别为多少的时候,一种方式是考虑使用某种方法动态维护每次的答案;另一种方式基于答案来源的线性性,以便于可以考虑每个部分对每种情况答案的贡献。

AT2650 [ARC077C] guruguru的更多相关文章

  1. guruguru

    6576: guruguru 时间限制: 1 Sec  内存限制: 128 MB提交: 28  解决: 12[提交] [状态] [讨论版] [命题人:admin] 题目描述 Snuke is buyi ...

  2. AtCoder Regular Contest 077 E - guruguru

    https://arc077.contest.atcoder.jp/tasks/arc077_c 有m个点围成一个圈,按顺时针编号为1到m,一开始可以固定一个位置x,每次操作可以往顺时针方向走一步或直 ...

  3. ARC077C pushpush 递推

    ---题面--- 题解: 貌似一般c题都是递推... 观察到最后一个插入的数一定在第一个,倒数第二个插入的数一定在倒数第一个,倒数第三个插入的数一定在第2个,倒数第四个插入的数一定在倒数第2个…… O ...

  4. Arc077_E Guruguru

    传送门 题目大意 有$m$个点编号从小到大按照顺时针编成了一个环,有一枚棋子,每次移动可以选择顺时针移动到下一个或者直接移动到编号为$x$的点,现在有$n-1$次数操作,第$i$次要把棋子从第$A_i ...

  5. AtCoder Regular Contest 077 E - guruguru 线性函数 前缀和

    题目链接 题意 灯有\(m\)个亮度等级,\(1,2,...,m\),有两种按钮: 每次将亮度等级\(+1\),如\(1\rightarrow 2,2\rightarrow 3,...,m-1\rig ...

  6. atcode E - guruguru(思维+前缀)

    题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_c 题解:一道思维题.不容易想到类似区间求和具体看一下代码. #include <iostr ...

  7. 转iOS中delegate、protocol的关系

    iOS中delegate.protocol的关系 分类: iOS Development2014-02-12 10:47 277人阅读 评论(0) 收藏 举报 delegateiosprocotolc ...

  8. protocol(协议) 和 delegate(委托)也叫(代理)---辨析

    protocol和delegate完全不是一回事. 协议(protocol),(名词)要求.就是使用了这个协议后就要按照这个协议来办事,协议要求实现的方法就一定要实现. 委托(delegate),(动 ...

  9. AtCoder Regular Contest 077

    跟身在国外的Marathon-fan一起打的比赛,虽然最后没出F但还是涨分了. C - pushpush 题意:n次操作,每次往一个序列后面塞数,然后把整个序列翻转. #include<cstd ...

随机推荐

  1. jsp标签 c:when

    Illegal use of <when>-style tag without <choose> as its direct parent 在jsp页面用报错Illegal u ...

  2. 台湾旺玖MA8601|USB HUB方案|MA8601测试版

    MA8601是USB 2.0高速4端口集线器控制器的高性能解决方案,完全符合通用串行总线规范2.0.MA8601继承了先进的串行接口技术,当4个DS(下游)端口同时工作时,功耗最低. MA8601采用 ...

  3. SpringCloud创建Eureka模块集群

    1.说明 本文详细介绍Spring Cloud创建Eureka模块集群的方法, 基于已经创建好的Spring Cloud Eureka Server模块, 请参考SpringCloud创建Eureka ...

  4. EFCore:关于DDD中值对象(Owns)无法更新数值

    最近使用DDD+EFCore时,使用EFCore提供的OwnsOne或者OwnsMany关联值对象保存数据,没想到遇到一个很奇怪的问题:值对象中的值竟然无法被EFCore保存!也没有抛出任何异常!我瞬 ...

  5. [GDOI2021 Day2T1] 宝石

    题目大意 \(n\)个点的树, 树上每一个点有一个宝石\(w_i\), 给出一个固定的数字不重复的序列\(p_i\)和一些询问\(u_i, v_i\), 对于每一个询问求出\(u_i\)到\(v_i\ ...

  6. Git 标签使用详解

    列出标签 # 默认按字母排序显示 $ git tag # 模糊匹配查找标签 $ git tag -l "v1.8.5*" 创建标签 # 创建附注标签 $ git tag -a v1 ...

  7. Microsoft HoloLens 开发(3): 全息图交互方式 - Gaze

    Gaze(凝视) 是 HoloLens 交互输入的第一种形式,告诉你 用户 在世界上的位置,并让你确定他们的意图. 1.Gaze的用途 作为一个 Mixed Reality 开发者,Gaze 可以做很 ...

  8. 关闭SpringBoot logo图标

    public static void main(String[] args) {// SpringApplication.run(LicenseApp.class, args); //关闭Spring ...

  9. Java中Jar包调用命令行运行编译

    原文链接:https://www.toutiao.com/i6491877373942694413/ 记事本编写两个简单的类 文件结构目录 启动DOS,进入文件所在目录 进入到class所在文件的目录 ...

  10. SpringCloud的Config应用

    一.简介 ***应用程序先注册到注册中心,在注册中心根据guli-config服务的名字找到配置中心,然后在配置中心根据配置从github加载基本配置. 二.配置中心(服务端,可以部署集群) 1.依赖 ...