NOIP赛前集训营-提高组(第一场)#A 中位数
题目描述
输入描述:
第一行输入两个数N,Len。
第二行输入序列A,第i个数代表A[i]。
输出描述:
一行一个整数,代表所有长度>=Len的子区间中,最大的中位数。
输入
11 3
4864 8684 9511 8557 1122 1234 953 9819 101 1137 1759
输出
8684
备注:
数据范围:
30%: n <= 200
60%: n <= 2000
另外有20%:不超过50个不同的数
100%:1<=Len<=n<=10^5, 1 <= a[i] <= 10^9
Solution:
本题ZYYS,考场上打了个主席树水了60分,实际上能水80分的,但数组开小了GG,然后正解是二分。
对原数列排序,二分某一数$x$作为答案,那么只要判断$x$是否能作为合法的中位数。
判断的过程理解为原数列是否存在大于等于$x$的中位数,对于大于等于$x$的数赋值为1,小于$x$的数赋值为$-1$,然后求前缀和,那么只需判断是否存在一段合法的区间$r-l+1>=len$使得$s[r]-s[l-1]\geq 0$即可,贪心的想到合法的$s[l-1]$越小越好,所以记录下合法的前缀和最小值,然后直接$O(n)$扫一遍判断就好了。
时间复杂度$O(n\log n)$。
代码:
/*Code by 520 -- 9.9*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,a[N],b[N],c[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il bool check(int tp){
int minn=0x7fffffff;
For(i,,n) c[i]=c[i-]+(a[i]>=tp?:-);
For(i,m,n) {
minn=min(minn,c[i-m]);
if(c[i]>minn)return ;
}
return ;
} int main(){
n=gi(),m=gi();
For(i,,n) a[i]=b[i]=gi();
sort(b+,b+n+);
int l=,r=n;
while(l<=r){
RE int mid=l+r>>;
if(check(b[mid])) l=mid+;
else r=mid-;
}
cout<<b[r];
return ;
}
NOIP赛前集训营-提高组(第一场)#A 中位数的更多相关文章
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B题 区间
牛客网NOIP赛前集训营-提高组(第四场) 题目描述 给出一个序列 a1, ..., an. 定义一个区间 [l,r] 是好的,当且仅当这个区间中存在一个 i,使得 ai 恰好等于 al, al+1, ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场
第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...
- 牛客网NOIP赛前集训营-提高组(第一场)
牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...
- NOIP赛前集训营-提高组(第一场)#B 数数字
题目描述 小N对于数字的大小一直都有两种看法.第一种看法是,使用字典序的大小(也就是我们常用的判断数字大小的方法,假如比较的数字长度不同,则在较短一个前面补齐前导0,再比较字典序),比如43<3 ...
- [牛客网NOIP赛前集训营-提高组(第一场)]C.保护
链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...
- 牛客网NOIP赛前集训营-提高组(第一场)B 数数字
数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
随机推荐
- JavaScript判断对象是否是NULL(转)
写js经常会遇到非空判断,看了你不就像风一样的文章 自己没有做总结,特地转载.很有帮助 function isEmpty(obj) { // 检验 undefined 和 null if (!obj ...
- 六度空间(MOOC)
六度空间: “六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论.这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五 ...
- Aria2 Linux 完整安装及使用教程
Aria2 嘛,主要是用来离线下载,功能强大,支持 http/https 直链.ftp.电驴.磁力链接等等,且可以跨平台使用,配合网页端操作,简直是一代下载神器. 安装 Debian/Ubuntu: ...
- Docker 入门之docker容器创建
使用docker容器的大多数人都是因为想要隔离不同运行环境的差异,使得自己的应用能更好的移植和部署.那么我们来看看掌握docker需要掌握哪些方面. 1,搭建docker环境 2,编译镜像并将其运行成 ...
- 高可用OpenStack(Queen版)集群-4.keystone集群
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- Django_rest_framework_Serializer
序列化Serializer 序列化用于对用户请求数据进行验证和数据进行序列化(为了解决queryset序列化问题). 那什么是序列化呢?序列化就是把对象转换成字符串,反序列化就是把字符串转换成对象 m ...
- iOS 动态库、静态库 . framework 总结(2017.1.25 修改)
修改于2017.1.25 使用Xcode Version 8.2.1 1.怎么创建.framework? 打开Xcode, 选择File ----> New ---> Project 选择 ...
- C++ 类 析构函数
一.析构函数的定义 析构函数为成员函数的一种,名字与类名相同,在前面加‘~’没有参数和返回值在C++中“~”是位取反运算符.一个类最多只能有一个析构函数.析构函数不返回任何值,没有函数类型,也没有函数 ...
- 将eclipse上的web项目部署到Tomcat服务器上经验总结
1. 将Tomcat插件添加到eclipse上 Window --> Preferences --> Server --> Runtime Environment --> A ...
- spring冲刺第二天
昨天查找了安卓开发的相关资料以及炸弹人游戏的资料. 由于今天课程比较多,只在晚上将安卓开发环境配置完成. 在安装软件时环境配置出现了问题,不过问过同学后成功解决.