NOIP赛前集训营-提高组(第一场)#A 中位数
题目描述
输入描述:
第一行输入两个数N,Len。
第二行输入序列A,第i个数代表A[i]。
输出描述:
一行一个整数,代表所有长度>=Len的子区间中,最大的中位数。
输入
11 3
4864 8684 9511 8557 1122 1234 953 9819 101 1137 1759
输出
8684
备注:
数据范围:
30%: n <= 200
60%: n <= 2000
另外有20%:不超过50个不同的数
100%:1<=Len<=n<=10^5, 1 <= a[i] <= 10^9
Solution:
本题ZYYS,考场上打了个主席树水了60分,实际上能水80分的,但数组开小了GG,然后正解是二分。
对原数列排序,二分某一数$x$作为答案,那么只要判断$x$是否能作为合法的中位数。
判断的过程理解为原数列是否存在大于等于$x$的中位数,对于大于等于$x$的数赋值为1,小于$x$的数赋值为$-1$,然后求前缀和,那么只需判断是否存在一段合法的区间$r-l+1>=len$使得$s[r]-s[l-1]\geq 0$即可,贪心的想到合法的$s[l-1]$越小越好,所以记录下合法的前缀和最小值,然后直接$O(n)$扫一遍判断就好了。
时间复杂度$O(n\log n)$。
代码:
/*Code by 520 -- 9.9*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,a[N],b[N],c[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il bool check(int tp){
int minn=0x7fffffff;
For(i,,n) c[i]=c[i-]+(a[i]>=tp?:-);
For(i,m,n) {
minn=min(minn,c[i-m]);
if(c[i]>minn)return ;
}
return ;
} int main(){
n=gi(),m=gi();
For(i,,n) a[i]=b[i]=gi();
sort(b+,b+n+);
int l=,r=n;
while(l<=r){
RE int mid=l+r>>;
if(check(b[mid])) l=mid+;
else r=mid-;
}
cout<<b[r];
return ;
}
NOIP赛前集训营-提高组(第一场)#A 中位数的更多相关文章
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B题 区间
牛客网NOIP赛前集训营-提高组(第四场) 题目描述 给出一个序列 a1, ..., an. 定义一个区间 [l,r] 是好的,当且仅当这个区间中存在一个 i,使得 ai 恰好等于 al, al+1, ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场
第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...
- 牛客网NOIP赛前集训营-提高组(第一场)
牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...
- NOIP赛前集训营-提高组(第一场)#B 数数字
题目描述 小N对于数字的大小一直都有两种看法.第一种看法是,使用字典序的大小(也就是我们常用的判断数字大小的方法,假如比较的数字长度不同,则在较短一个前面补齐前导0,再比较字典序),比如43<3 ...
- [牛客网NOIP赛前集训营-提高组(第一场)]C.保护
链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...
- 牛客网NOIP赛前集训营-提高组(第一场)B 数数字
数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
随机推荐
- 腾讯云服务器linux Ubuntu操作系统搭建ftp服务器vsftpd
腾讯云服务器linux Ubuntu操作系统安装ftp服务器vsftpd 操作系统: Ubuntu Server 16.04.1 LTS 64位 下面我将系统重装, 一步一步从头开始,安装FTP服务器 ...
- CAN总线波形中ACK位电平为什么会偏高?
摘要:如果CAN总线中有多个节点,在某一点测试CAN总线的波形(CANH和CANL之间)时,会发现在一帧数据的末尾ACK位的差分电平会偏高.网上有关于此问题的一些描述和解释,但孔丙火(微信公众号:孔丙 ...
- 理解unittest(六)
unittest,顾名思义就是一个单元测试框架,但是它不仅适用于单元测试,还适用WEB自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过,最终生成 ...
- 【SIKIA计划】_06_Unity2D游戏开发-拾荒者笔记
[新增分类]Animations 动画——Animation——AnimatorControllerPrefabs 预制 [素材导入]unitypackage 素材包Sprites Editor 编辑 ...
- Windows系统环境变量之path环境变量(Java, Python环境变量配置)
系统: Windows10 path系统环境变量的作用: Windows和DOS操作系统中的path环境变量,当要求系统运行一个程序而没有告诉它程序所在的完整路径时,系统除了在当前目录下面寻找此程序外 ...
- jmeter控制器(二)
循环控制器: 顾名思义就是做循环控制的,与线程组的循环一样的,不过这里的循环控制器是用在一个单独的模块的,而在线程组里面的循环是作用于全局的.循环控制器里面设置的循环次数是局部有效,只控制自己范围内的 ...
- 【转】利用telnet来进行调试Skynet
https://blog.csdn.net/WhereIsHeroFrom/article/details/80674408
- 【树莓派】crontab的两个问题
1,/var/log下面,没有cron.log日志 root@raspberrypi:/# nano /etc/rsyslog.conf …… …… ############### #### RULE ...
- 基于Python的信用评分卡模型分析(一)
信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...
- iOS开发日常遇到问题记录
1. [self.navigationController.navigationBar setTranslucent:NO]; iOS 7 之后,setTranslucent=yes 默认的 则状 ...