二值化方法:Kittler:Minimum Error Thresholding
Kittler二值化方法,是一种经典的基于直方图的二值化方法。由J. Kittler在1986年发表的论文“Minimum Error Thresholding”提出。论文是对贝叶斯最小错误阈值的准则做了改进,使得计算更加的简单和有效。
Divijver 和 Kittler的贝叶斯最小错误准则为:
因为需要求解二次方程和对正态分布的均值和方差进行估计,Nagawa 和 Rosenfeld提出了求解和估计的方法(Some Experiments on Variable Thresholding)。但他们的方法计算式很耗时的。作者做了一个修改,从而得到了计算更简单的准则函数。假设已知直方图h, 则通过以下目标函数寻找最优为:
,
其中
该方法对于双峰的图像,双峰差别特别大的图像有很好的分割效果,这样的的场景在工业视觉中的零部件中常常遇到。如打光部件后是很容易形成双波峰的,这样该方法的分割往往会得到很好的效果,下面的实验也说明该方法在这类场景中是要更优于大津法和一维最大熵法的。
论文中还提到了一种变化阈值的求解办法。其思想是:首先将图像割成大小一样的小块(patch),然后对每个小块都使用论文所提到的方法计算得到一个局部(相对于整幅图片)的阈值,接着用双边插值法对计算得到的阈值进行插值,从而得到了每个像素点的二值化分割阈值。文中对一个工业器件进行分割,并给出了效果图:
代码实现参考了ImageShop提供的C#版本(http://www.cnblogs.com/Imageshop/p/3307308.html),做了简单修改得到了C++版本,代码如下:
/*灰度图像的二值化方法*/ class CxThreshold
{
public:
static int CalcKittlerMinError(int* HistGram)
{
int X, Y;
int MinValue, MaxValue;
int Threshold ;
long PixelBack, PixelFore;
double OmegaBack, OmegaFore, MinSigma, Sigma, SigmaBack, SigmaFore;
for (MinValue = ; MinValue < && HistGram[MinValue] == ; MinValue++) ;
for (MaxValue = ; MaxValue > MinValue && HistGram[MinValue] == ; MaxValue--) ;
if (MaxValue == MinValue) return MaxValue; // 图像中只有一个颜色
if (MinValue + == MaxValue) return MinValue; // 图像中只有二个颜色
Threshold = -;
MinSigma = 1E+;
for (Y = MinValue; Y < MaxValue; Y++){
PixelBack = ; PixelFore = ;
OmegaBack = ; OmegaFore = ;
for (X = MinValue; X <= Y; X++){
PixelBack += HistGram[X];
OmegaBack = OmegaBack + X * HistGram[X];
}
for (X = Y + ; X <= MaxValue; X++){
PixelFore += HistGram[X];
OmegaFore = OmegaFore + X * HistGram[X];
}
OmegaBack = OmegaBack / PixelBack;
OmegaFore = OmegaFore / PixelFore;
SigmaBack = ; SigmaFore = ;
for (X = MinValue; X <= Y; X++) SigmaBack = SigmaBack + (X - OmegaBack) * (X - OmegaBack) * HistGram[X];
for (X = Y + ; X <= MaxValue; X++) SigmaFore = SigmaFore + (X - OmegaFore) * (X - OmegaFore) * HistGram[X];
if (SigmaBack == || SigmaFore == ){
if (Threshold == -)Threshold = Y;
}
else{
SigmaBack = sqrt(SigmaBack / PixelBack);
SigmaFore = sqrt(SigmaFore / PixelFore);
//Sigma = 1 + 2 * (PixelBack * log(SigmaBack / PixelBack) + PixelFore * log(SigmaFore / PixelFore));
Sigma = PixelBack * log(SigmaBack / PixelBack) + PixelFore * log(SigmaFore / PixelFore) - PixelBack * log( PixelBack) - PixelFore* log(PixelFore);
if (Sigma < MinSigma){
MinSigma = Sigma;
Threshold = Y;
}
}
}
return Threshold;
}
};
实验不同算法的效果:
kettler法,获得最佳的分割效果,纽扣完整性最好。
大津法,对纽扣亮色部分分割不好。
一维最大熵法。获得了最差的效果,纽扣完整性不好。对和白色接近的颜色分割较差。
二值化方法:Kittler:Minimum Error Thresholding的更多相关文章
- python实现超大图像的二值化方法
一,分块处理超大图像的二值化问题 (1) 全局阈值处理 (2) 局部阈值 二,空白区域过滤 三,先缩放进行二值化,然后还原大小 np.mean() 返回数组元素的平均值 np.std() 返回数 ...
- [python-opencv]超大图像二值化方法
*分块 *全局阈值 VS 局部阈值 import cv2 as cv import numpy as np def big_image_binary(image): print(image.shape ...
- 二值法方法综述及matlab程序
在某些图像处理当中一个关键步是二值法,二值化一方面能够去除冗余信息,另一方面也会使有效信息丢失.所以有效的二值化算法是后续的处理的基础.比如对于想要最大限度的保留下面图的中文字,以便后续的定位处理. ...
- 一种局部二值化算法:Sauvola算法
之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/ar ...
- openCV_java 图像二值化
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...
- 二值化函数cvThreshold()参数CV_THRESH_OTSU的疑惑【转】
查看OpenCV文档cvThreshold(),在二值化函数cvThreshold(const CvArr* src, CvArr* dst, double threshold, double max ...
- [python-opencv]图像二值化【图像阈值】
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...
- OpenCV_基于局部自适应阈值的图像二值化
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...
- OpenCV---超大图像二值化和空白区域过滤
超大图像的二值化方法 1.可以采用分块方法, 2.先缩放处理就行二值化,然后还原大小 一:分块处理超大图像的二值化问题 def big_image_binary(image): print(image ...
随机推荐
- Linux学习笔记-Linux系统简介
Linux学习笔记-Linux系统简介 UNIX与Linux发展史 UNIX是父亲,Linux是儿子. UNIX发行版本 操作系统 公司 硬件平台 AIX IBM PowerPC HP-UX HP P ...
- 一、springcloud服务注册、发现、调用(consul/eureka)
1.Spring Cloud简介 Spring Cloud是一个基于Spring Boot实现的云应用开发工具,它为基于JVM的云应用开发中的配置管理.服务发现.断路器.智能路由.微代理.控制总线.全 ...
- Focal Loss for Dense Object Detection 论文阅读
何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确 ...
- 浅谈js设计模式之单例模式
单例模式的定义是:保证一个类仅有一个实例,并提供一个访问它的全局访问点. 单例模式是一种常用的模式,有一些对象我们往往只需要一个,比如线程池.全局缓存.浏览器中的 window 对象等.在 JavaS ...
- 耗时任务DefaultEventExecutorGroup 定时任务
一. 耗时任务 static final EventExecutorGroup group = new DefaultEventExecutorGroup(16); // Tell the pipel ...
- java 内部类与控制框架
应用程序控制框架(application framework)就是设计解决某类特殊问题的一个类,或一组类,要运用某个应用程序框架,通常是继承一个类或多个类,并覆盖这些方法.在覆盖的方法中编写代码定制应 ...
- JAVA复习笔记分布式篇:kafka
前言:第一次使用消息队列是在实在前年的时候,那时候还不了解kafka,用的是阿里的rocket_mq,当时觉得挺好用的,后来听原阿里的同事说rocket_mq是他们看来kafka的源码后自己开发了一套 ...
- Linux学习笔记:nohup & 后台任务
在linux中,使用nohup xxx.sh &可以将前台任务变成后台任务执行,如果只使用&的话,在突然断网或者关闭启动终端时,内核会向后台任务发送sighup信号,从而导致后台任务停 ...
- 20155225 2016-2017-2 《Java程序设计》第2周学习总结
20155225 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 比较java和C语言的不同点: java除了基本类型还有类类型 基本类型中还有字节和布尔 对 ...
- GitHub在线创建文件夹
点击New files按钮,然后输入含有slash字符(“/”)的文件名即可.也就是建立一个含有路径(目录)的文件,即会自动产生新文件夹. 点击Upload files按钮,然后直接把本地的文件夹(内 ...