[WC2014]时空穿梭(莫比乌斯反演)
https://www.cnblogs.com/CQzhangyu/p/7891363.html
不难推到$\sum\limits_{D=1}^{m_1}\sum\limits_{d|D}C_{d-1}^{c-2}\mu(\frac D d)\prod\limits_{i=1}^n\frac {(2m_i-({\lfloor \frac {m_i} {D} \rfloor}+1)\times D){\lfloor \frac {m_i} {D} \rfloor}}{2}$。
$O(Tnm)$,可以拿80甚至100。
我们发现,求和部分与累积部分都含有D,这使分块加速变得困难。
化一下式子发现,当将$\lfloor\frac{m}{D}\rfloor$看作常数时,右边可以化成一个n次多项式。
$O(cm\log m+nmc)$预处理出多项式系数,$O(n\sqrt{m})$整除分块,$O(n^2)$暴力求多项式系数即可。
常数过大BZ被卡。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,mod=,inv2=;
bool b[N];
int T,c,n,tot,mn,ans,m[],p[N],mu[N],C[N][],s[N][][],sj[N][],f[],g[N][]; int main(){
freopen("space.in","r",stdin);
freopen("space.out","w",stdout);
mu[]=;
rep(i,,M){
if (!b[i]) p[++tot]=i,mu[i]=-;
for (int j=; j<=tot && i*p[j]<=M; j++){
b[i*p[j]]=;
if (i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
rep(i,,M){
C[i][]=;
rep(j,,min(i,)) C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
rep(i,,M){
int tmp=;
rep(k,,) sj[i][k]=tmp,tmp=1ll*tmp*i%mod;
}
rep(j,,) rep(i,,M) if (mu[i])
for (int k=i; k<=M; k+=i) g[k][j]=(g[k][j]+1ll*mu[i]*C[k/i-][j]%mod+mod)%mod;
rep(i,,M) rep(j,,) rep(k,,) s[i][j][k]=(s[i-][j][k]+1ll*g[i][j]*sj[i][k])%mod;
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&c); mn=N; ans=;
rep(i,,n) scanf("%d",&m[i]),mn=min(mn,m[i]);
for (int i=,lst; i<=mn; i=lst+){
lst=mn; rep(j,,n) lst=min(lst,m[j]/(m[j]/i));
int tmp=; rep(j,,n) tmp=1ll*tmp*(m[j]/i)%mod*inv2%mod;
memset(f,,sizeof(f)); f[]=;
rep(j,,n) for (int k=j; ~k; k--) f[k]=(2ll*f[k]*m[j]%mod-1ll*f[k-]*(m[j]/i+)%mod+mod)%mod;
rep(j,,n) ans=(ans+1ll*tmp*f[j]%mod*(s[lst][c-][j]-s[i-][c-][j]+mod)%mod)%mod;
}
printf("%d\n",ans);
}
return ;
}
[WC2014]时空穿梭(莫比乌斯反演)的更多相关文章
- 【BZOJ3434】[Wc2014]时空穿梭 莫比乌斯反演
[BZOJ3434][Wc2014]时空穿梭 Description Input 第一行包含一个正整数T,表示有T组数据求解每组数据包含两行,第一行包含两个正整数N,C(c>=2),分别表示空间 ...
- BZOJ 3434 [WC2014]时空穿梭 (莫比乌斯反演)
题面:BZOJ传送门 洛谷传送门 好难啊..反演的终极题目 首先,本题的突破口在于直线的性质.不论是几维的空间,两点一定能确定一条直线 选取两个点作为最左下和最右上的点! 假设现在是二维空间,选取了$ ...
- UOJ 54 【WC2014】时空穿梭——莫比乌斯反演
题目:http://uoj.ac/problem/54 想写20分. Subtask 2 就是枚举4个维度的值的比例,可算对于一个比例有多少个值可以选,然后就是组合数.结果好像不对. 因为模数太小,组 ...
- UOJ#54 BZOJ3434 [WC2014]时空穿梭
题目描述 小 X 驾驶着他的飞船准备穿梭过一个 \(n\) 维空间,这个空间里每个点的坐标可以用 \(n\) 个实数表示,即 \((x_1,x_2,\dots,x_n)\). 为了穿过这个空间,小 X ...
- BZOJ3434 [Wc2014]时空穿梭
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [WC2014]时空穿梭
这才叫莫比乌斯反演题. 一.题目 点此看题 二.解法 也没有什么好的思路,我们不妨把暴力柿子写出来,我们想枚举直线,但是这道题不能枚举直线的斜率,所以就要用整数来表示直线,我们不妨枚举出发点和终止点的 ...
- BZOJ3434 WC2014时空穿梭(莫比乌斯反演)
考虑枚举相邻点距离差的比例.显然应使比例值gcd为1以保证不重复统计.确定比例之后,各维坐标的方案数就可以分开考虑.设比例之和为k,则若坐标上限为m,该维坐标取值方案数即为Σm-ki (i=1~⌊m/ ...
- 【BZOJ】3434: [Wc2014]时空穿梭
http://www.lydsy.com/JudgeOnline/problem.php?id=3434 题意:n维坐标中要找c个点使得c个点在一条线上且每一维的坐标单调递增且不能超过每一维限定的值m ...
- 莫比乌斯反演题表II
bzoj3994:[SDOI2015]约数个数和 **很好推+有个小结论bzoj3309:DZY Loves Math ***很好推+线筛某函数/卡常bzoj4816:[Sdoi2017]数字表格 * ...
随机推荐
- Linux基础操作命令-打包压缩
将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) 将用户信息数据库文件和用户密码数据库文件纵向合并为一个文件/2.txt(追加) 将/1.txt./2.txt两个文件打包为 ...
- 2016.07.15——istringstream测试
istringstream测试 1.istringstream strcin(str),字符串(str)可以包括多个单词,单词之间使用空格分开 #include "stdafx.h" ...
- Android Framebuffer介绍及使用【转】
转自:https://www.jianshu.com/p/df1213e5a0ed 来自: Android技术特工队 作者: Aaron 主页: http://www.wxtlife.com/ 原文连 ...
- .net开源框架开源类库(整理)
源:http://www.cnblogs.com/chinanetwind/p/3715809.html 常用库 Json.NET https://github.com/JamesNK/Newtons ...
- Python爬虫---requests库快速上手
一.requests库简介 requests是Python的一个HTTP相关的库 requests安装: pip install requests 二.GET请求 import requests # ...
- DevExpress GridControl 的数据绑定
本人不才啊,折腾2个多小时才把数据绑定好.现在把折腾过程记录一下来以帮助更多的朋友,自己也温习一下. 直接上代码了哈.... WPF哈 xaml文件 <dxg:GridControl Name= ...
- docker安装(2018-03-14版本)
[安装] 说明一: CENTOS或RHEL自带的docker源不一定是最新的,所以必须到docker.com去找到最新的yum源进行安装 说明二: docker的安装方式有两种: 1. 从指定网站获取 ...
- css3在动画完成后执行事件
第一种方法: 用计时器,设定一个和动画时长一样的time,过time事件去执行这个函数. setTimeout(function(){ },time); 第二种方法: 当-webkit-animati ...
- python3项目之数据可视化
数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联. 数据科学家使用Python编写了一系列令人印象深刻的可视化和分析工具,其中很多也可供 ...
- 算法笔试题整理——升级蓄水池 && 字符串数字表达式计算值 && 求旅游完所有景点需要的最少天数 && 宝箱怪
1. 小米笔试题——升级蓄水池 题目描述: 在米兔生活的二维世界中,建造蓄水池非常简单. 一个蓄水池可以用n个坐标轴上的非负整数表示,代表区间为[0-n]范围内宽度为1的墙壁的高度. 如下图1,黑色部 ...