【BZOJ-3110】K大数查询 整体二分 + 线段树
3110: [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 6265 Solved: 2060
[Submit][Status][Discuss]
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
Source
Solution
树套树裸题..当然整体二分+线段树也可以过..
整体二分就是离散化后二分答案,对于答案有贡献的先加入到线段树,然后对于询问的区间,如果答案偏大,放到左边,答案偏小放到右边,直到最后统计答案。
坑点就是$50000*50000$爆int...多谢discuss里kpm的提醒..
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN 50010
int N,M;
struct QNode{
int opt,l,r,x,id,ans;
QNode (int O=0,int L=0,int R=0,int X=0,int I=0) {opt=O,l=L,r=R,x=X,id=I;}
}Q[MAXN];
inline bool cmp(QNode x,QNode y) {return x.id<y.id;}
namespace SgtTree
{
struct SgtNode{
int l,r; unsigned int tag,sum;
}tree[MAXN<<2];
#define lson now<<1
#define rson now<<1|1
inline void Update(int now) {tree[now].sum=tree[lson].sum+tree[rson].sum;}
inline void Build(int now,int l,int r)
{
tree[now].l=l,tree[now].r=r;
if (l==r) return;
int mid=(l+r)>>1;
Build(lson,l,mid); Build(rson,mid+1,r);
}
inline void Pushdown(int now)
{
if (!tree[now].tag || tree[now].l==tree[now].r) return;
unsigned int delta=tree[now].tag;
tree[now].tag=0;
tree[lson].sum+=delta*(tree[lson].r-tree[lson].l+1);
tree[rson].sum+=delta*(tree[rson].r-tree[rson].l+1);
tree[lson].tag+=delta;
tree[rson].tag+=delta;
}
inline void Modify(int now,int L,int R,int delta)
{
int l=tree[now].l,r=tree[now].r;
Pushdown(now);
if (L<=l && R>=r) {tree[now].sum+=(r-l+1)*delta; tree[now].tag+=delta; return;}
int mid=(l+r)>>1;
if (L<=mid) Modify(lson,L,R,delta);
if (R>mid) Modify(rson,L,R,delta);
Update(now);
}
inline unsigned int Query(int now,int L,int R)
{
int l=tree[now].l,r=tree[now].r;
Pushdown(now);
if (L<=l && R>=r) return tree[now].sum;
int mid=(l+r)>>1; unsigned int re=0;
if (L<=mid) re+=Query(lson,L,R);
if (R>mid) re+=Query(rson,L,R);
return re;
}
}using namespace SgtTree; QNode ql[MAXN],qr[MAXN];
inline void Divide(int L,int R,int l,int r)
{
if (L>R) return;
if (l==r)
{
for (int i=L; i<=R; i++)
if (Q[i].opt==2) Q[i].ans=l;
return;
}
int mid=(l+r)>>1,nl=0,nr=0;
for (int i=L; i<=R; i++)
if (Q[i].opt==1)
{
if (Q[i].x<=mid)
Modify(1,Q[i].l,Q[i].r,1),ql[++nl]=Q[i];
else qr[++nr]=Q[i];
}
else
{
unsigned int rk=Query(1,Q[i].l,Q[i].r);
if (rk>=Q[i].x)
ql[++nl]=Q[i];
else Q[i].x-=rk,qr[++nr]=Q[i];
}
for (int i=1; i<=nl; i++) if (ql[i].opt==1) Modify(1,ql[i].l,ql[i].r,-1); for (int i=1; i<=nl; i++) Q[L+i-1]=ql[i];
for (int i=1; i<=nr; i++) Q[L+nl+i-1]=qr[i]; Divide(L,L+nl-1,l,mid);
Divide(L+nl,R,mid+1,r);
} int ls[MAXN],top;
int main()
{
N=read(),M=read();
for (int i=1; i<=M; i++)
{
int opt=read(),l=read(),r=read(),x=read();
if (opt==1) ls[++top]=x;
Q[i]=QNode(opt,l,r,x,i);
}
stable_sort(ls+1,ls+top+1); top=unique(ls+1,ls+top+1)-ls-1; for (int i=1; i<=M; i++)
if (Q[i].opt==1)
Q[i].x=lower_bound(ls+1,ls+1+top,Q[i].x)-ls,Q[i].x=top-Q[i].x+1; // for (int i=1; i<=M; i++)
// printf("%d %d %d %d %d\n",Q[i].opt,Q[i].l,Q[i].r,Q[i].x,Q[i].id); Build(1,1,N);
Divide(1,M,1,top); stable_sort(Q+1,Q+M+1,cmp);
for (int i=1; i<=M; i++)
if (Q[i].opt==2) printf("%d\n",ls[top-Q[i].ans+1]);
return 0;
}
【BZOJ-3110】K大数查询 整体二分 + 线段树的更多相关文章
- BZOJ 3110 K大数查询 | 整体二分
BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...
- BZOJ 3110 [ZJOI2013]K大数查询 (整体二分+线段树)
和dynamic rankings这道题的思想一样 只不过是把树状数组换成线段树区间修改,求第$K$大的而不是第$K$小的 这道题还有负数,需要离散 #include <vector> # ...
- [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...
- [ZJJOI2013]K大数查询 整体二分
[ZJJOI2013]K大数查询 链接 luogu 思路 整体二分. 代码 #include <bits/stdc++.h> #define ll long long using name ...
- [BZOJ]3110 K大数查询(ZJOI2013)
这大概是唯一一道小C重写了4次的题目. 姿势不对的树套树(Fail) → 分块(Fail) → 整体二分(Succeed) → 树套树(Succeed). 让小C写点心得静静. Description ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]
有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...
- BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分
[题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...
- P3332 [ZJOI2013]K大数查询 整体二分
终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...
随机推荐
- yum怎么用?
一.yum 简介 yum,是Yellow dog Updater, Modified 的简称,是杜克大学为了提高RPM 软件包安装性而开发的一种软件包管理器.起初是由yellow dog 这一发行版的 ...
- docker stack 部署 rabbitmq 容器
=============================================== 2018/5/13_第1次修改 ccb_warlock == ...
- 19 Error handling and Go go语言错误处理
Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...
- geoserver 启动闪退
跟JDK版本有关: 比如geoserver2.11需要JDK版本为JDK1.8 windows配置两个jdk环境: 网上有方法,但如果只需要满足geoserver的话,可以只安装jdk(注意jdk和j ...
- 【前端开发】限制input输入保留两位小数
<input type="text" name='amount' id="cash_num" placeholder="请输入金额" ...
- Linux下的输入/输出重定向
Linux环境中支持输入输出重定向,用符号<和>来表示.0.1和2分别表示标准输入.标准输出和标准错误信息输出,可以用来指定需要重定向的标准输入或输出,比如 2>lee.dat 表示 ...
- Java事务管理之JDBC
前言 关于Java中JDBC的一些使用可以参见: Java 中使用JDBC连接数据库例程与注意事项 在使用JDBC的使用, 如何进行事务的管理.直接看一下代码 示例代码 /** * @Title: J ...
- Linux 命令find、grep
本文就向大家介绍find.grep命令,他哥俩可以算是必会的linux命令,我几乎每天都要用到他们.本文结构如下: find命令 find命令的一般形式 find命令的常用选项及实例 find与xar ...
- WordPress用户登录后重定向到指定页面
这篇文章将向您展示WordPress用户登录后如何重定向到指定页面或者文章的技巧. 一.重定向到网站管理面板. 将以下代码添加到您的当前主题的 functions.php 文件中: function ...
- MFC+WinPcap编写一个嗅探器之四(获取模块)
这一节主要介绍如何获取设备列表,比较简单 获取设备列表主要是在CAdpDlg中完成,也就是对应之前创建的选择适配器模块,如图: 当打开选择适配器对话框后,在列表视图控件中显示当前主机所有适配器及适配器 ...