感觉前面做了那么多$dp$全是自己想的还是太少啊……

好像在LZT的博客上看到了不错的资源?赶紧开坑,以一句话题解为主

Codeforces 419B

第一题就开始盗图

由于只有一个交点,手玩一下发现两人的路径可以分为四块区域,且只有两种情况:

预处理四个方向的最长距离,枚举相交点即可

FZU 2234:

将往返路径看成从起点出发的两条路径

$dp[Xa][Xb][STEP]$用三维记录两个当前位置,转移时注意两点是否重复

Tip:建状态时注意是否有能合并的维度!

POJ 1050:

一开始想成最大全1子矩阵了……

这样权值和最大子矩阵好像也只能$O(n^3)$做:

$O(n^2)$枚举左右端点,再转换成1维$O(n)$算一遍从上到下的最长子序列

HDU 1024:

最大$m$字段和我可能之前学的是假的转移……

直接设$dp[i][j]$表示取前$i$个且第$i$个必选的最大$j$字段和,不需要再加一维表示是否选$i$

转移:$dp[i][j]=max(dp[i-1][j],dp[k][j-1])+a[i]$,滚动数组+记录前一层到$i-1$的最大值

Tip:

1、分清哪一层滚动来确定嵌套顺序

2、第二层(i)不能每次从1开始枚举,要从$j$开始!!!

边界尽量卡死防止出错

加强版见:https://www.cnblogs.com/newera/p/9534648.html

HDU 1257:

可以直接贪心判断是否需要增加系统并维护每个系统的末尾值

不过这其实是一道$Dilworth$定理相关的题

借此机会又好好复习了下集合论里的一些概念和证明:传送门

这题将偏序关系设为$i<j$且$a[i]<a[j]$,那么每个系统就是一条反链

最长链长度=最小反链覆盖,因此直接求LIS即可

HDU 1025:

按一边排序后直接LIS,注意输出里的$road$和$roads$……(还是要好好看样例!)

HDU 5282:

这里用$cnt[i][j]$计数时按是否选$a_i$分类

(注意分类转移的设置!)

1、不选$a_i$:$f[i][j]=f[i-1][j]$时加上$cnt[i-1][j]$

2、选$a_i$:预处理出$b_j$前第一个与$a_i$相同的位置$pre$

$f[i-1][pre-1]+1=f[i][j]$时加上$cnt[i-1][pre-1]$

FZU 2214:

尽量用范围小的量做状态!

POJ 2184:

要求在两个量和都大于0的情况下求最大的和

这样必定不能用和来建状态,而应该以其中一个量作状态用值存另一个量的最大值

UVa 624:

可以把$weight,value$都看成$w[i]$直接做背包

也可以用$vis[i][j]$表示能否凑出$j$

HDU 2639:

求第$K$大背包

转移的项与原来相同,只是对于每个原来状态都记录下前$K$大的值

每次转移时将$2*K$个数$O(n)$合并求出前$K$大即可

HDU 5534:

只要$\sum d_i=2*(n-1)$,那么就存在这样的一棵树

如果将每个点作为第一维那么转移是$O(n)$的,思考如何优化

发现将$d_i$相同的点合并看成一种物品再进行一些处理就能跑完全背包了!

Tips:

1、为了消除物品总数必须为$n$的限制,先给每个点分配1的度数,只考虑增量

这样就变成$W=n-2,num=n-2,w[i]'=w[i]-w[1]$的无限制完全背包了

2、注意这里要求总重量恰为$n-2$,而非至多,因此要把$dp$数组初始化为-INF$

DP Training(Updating)的更多相关文章

  1. DP Training(Updating)♪(^∇^*)

    DP Training DP Training 01 https://vjudge.net/contest/220286 密码 nfls A 数塔(Easy) \(f[i][j]\) 表示当前选第 \ ...

  2. xtu DP Training C.炮兵阵地

    炮兵阵地 Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 11856 ...

  3. xtu DP Training B. Collecting Bugs

    B. Collecting Bugs Time Limit: 10000ms Memory Limit: 64000KB 64-bit integer IO format: %lld      Jav ...

  4. (zhuan) 一些RL的文献(及笔记)

    一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinfor ...

  5. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  6. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  8. Gym - 100676G Training Camp (状压dp)

    G. Training Camp[ Color: Yellow ]Montaser is planning to train very hard for ACM JCPC 2015; he has p ...

  9. 2014 Super Training #9 E Destroy --树的直径+树形DP

    原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...

随机推荐

  1. UNIX环境高级编程 第4章 文件和目录

    第三章说明了关于文件I/O的基本函数,主要是针对普通regular类型文件.本章描述文件的属性,除了regular文件还有其他类型的文件. 函数stat.fstat.fstatat和lstat sta ...

  2. Spring4笔记7--AspectJ 对 AOP 的实现

    AspectJ 对 AOP 的实现: 对于 AOP 这种编程思想,很多框架都进行了实现.Spring 就是其中之一,可以完成面向切面编程.然而,AspectJ 也实现了 AOP 的功能,且其实现方式更 ...

  3. IIC串行总线的组成及其工作原理

    ------------------最近项目上用到了一款美信的DS1308RTC芯片,由于是挂在了Zynq的PS MIO上,需要软件人员协助才能测试:觉得太麻烦了,想通过飞线,然后在Vivado中调用 ...

  4. Ubuntu_安装Wiz笔记

    前言 安装完成了Linux,有了搜狗输入法,我们还需要笔记软件,本文主要介绍如何安装为知笔记 安装步骤 找到wiz官网:http://www.wiz.cn/ 获取Linux安装教程 安装QT 下载的Q ...

  5. MAVLink v1.0详解——结构

    本文针对 MAVLink v1.0版本,协议版本:3. MAVLink是为微型飞行器MAV(Micro Air Vehicle)设计的(LGPL)开源的通讯协议.是无人飞行器和地面站(Ground C ...

  6. 【前端开发】限制input输入保留两位小数

    <input type="text" name='amount' id="cash_num" placeholder="请输入金额" ...

  7. ubuntu下将程序挂后台命令

    ubuntu下将程序挂后台命令 nohup python -u main.py > test.out 2>&1 & ubunut下查看后台进程 jobs -l

  8. java基础54 网络通讯的三要素及网络/网页编程的概述

    1.概述 网络编程注意解决的是计算机(手机.平板.....)之间的数据传输问题.        网络编程:不需要基于html基础上,就可以进行数据间的传输.比如:FeiQ.QQ.微信.....     ...

  9. 题解 UVA10048 【Audiophobia】

    这是一道很神奇的题 什么都不卡,就卡c++11(所以评测时要换成c++). 怎么说呐,其实就是跑一个弗洛依德,求图上两点间最大权值最小的路径,输出最大权值最小. P.S.本题n很小,直接floyd变形 ...

  10. Codeforces 682C Alyona and the Tree (树上DFS+DP)

    题目链接:http://codeforces.com/problemset/problem/682/C 题目大意:取树上任意一个点v,若点v的子树中有一个点u使得dist(v,u)>a[u]那么 ...