bzoj 3309 反演
$n=p_1^{a_1}p_2^{a_2}…p_k^{a_k},p_i$为素数,定义$f(n)=max(a_1,a_2…,a_k)$。
给定a,b<=1e7求$\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}f((i,j))$
先简化。
\begin{eqnarray*} \sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}f((i,j)) &=& \sum_{d=1}^{min(a,b)}\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}f(d)[(i,j)=d] \newline &=& \sum_{d=1}^{min(a,b)}\sum\limits_{i=1}^{\lfloor \frac{a}{d} \rfloor}\sum\limits_{j=1}^{\lfloor \frac{a}{d} \rfloor}f(d)[(i,j)=1] \newline &=& \sum\limits_{{\rm{d = 1}}}^{\min (a,b)} {\sum\limits_{i = 1}^{\left\lfloor {\frac{a}{d}} \right\rfloor } {\sum\limits_{j = 1}^{\left\lfloor {\frac{b}{d}} \right\rfloor } {\sum\limits_{k|(i,j)}^{} {\mu (k)f(d)} } } } \newline &=& \sum\limits_{d = 1}^{\min (a,b)} {\sum\limits_{k = 1}^{\min (\left\lfloor {\frac{a}{d}} \right\rfloor ,\left\lfloor {\frac{b}{d}} \right\rfloor )} {f(d)\mu (k)} \left\lfloor {\frac{a}{{kd}}} \right\rfloor \left\lfloor {\frac{b}{{kd}}} \right\rfloor } \newline &=& \sum\limits_{T = kd = 1}^{\min (a,b)} {\sum\limits_{d|T}^{} {f(d)\mu (\frac{T}{d})} \left\lfloor {\frac{a}{T}} \right\rfloor \left\lfloor {\frac{b}{T}} \right\rfloor } \newline \end{eqnarray*}
所以只要能够预处理出$\sum\limits_{d|T} {f(d)\mu (\frac{T}{d})}$就能分块了。
注意观察该函数,根据$f()$取素因子次数的最大值及$\mu()$数论意义上的容斥性质,可以发现当$a_i$的值都一样时,才存在一个次数的组合使$\frac{T}{d}=p_1^{1}p_2^{1}…p_k^{1}$值无法被消去,因为它的$f()$值要比对称的组合$f(p_1^{0}p_2^{0}…p_k^{0})$大1,而其他的所有组合都可找到一个素因子数量对称的组合使得两者的$\mu$互为相反数而相消。
故最后$\sum\limits_{d|T} {f(d)\mu (\frac{T}{d})}=(-1)^{k+1}$
线性筛里处理数论函数。预处理其前缀和就好了。
/** @Date : 2017-09-28 21:09:51
* @FileName: bzoj 3309 反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
const double eps = 1e-8; int c = 0;
bool vis[N*10];
int pri[N]; int cnt[N*10];
int k[N*10];
int f[N*10]; void prime()
{
MMF(vis);
for(int i = 2; i < 10000010; i++)
{
if(!vis[i])
{
pri[c++] = i;
cnt[i] = 1;
k[i] = i;//最小的素因子对应的幂
f[i] = 1;
}
for(int j = 0; j < c && i * pri[j] < 10000010; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)//倍数
{
cnt[i * pri[j]] = cnt[i] + 1;//最小质因子次数+1
k[i * pri[j]] = k[i] * pri[j];//幂增大1次
int tmp = i / k[i];//除去该因子的幂
if(tmp == 1)
f[i * pri[j]] = 1;//说明只有一个因子
else f[i * pri[j]] = (cnt[tmp]==cnt[i * pri[j]]?-f[tmp]:0);//判断次数是否相同
break;
}
else
{
cnt[i * pri[j]] = 1;//首次出现默认次数为1
k[i * pri[j]] = pri[j];//
f[i * pri[j]] = (cnt[i]==1?-f[i]:0);
}
/*getchar();
cout << i<<"~~"<<i * pri[j] << "~"<<k[i * pri[j]] <<endl;
cout << cnt[i * pri[j]] << endl;*/
}
}
for(int i = 1; i < 10000010; i++)
f[i] += f[i - 1];
}
int main()
{
int T;
prime();
cin >> T;
while(T--)
{
LL a, b;
scanf("%lld%lld", &a, &b);
if(a > b)
swap(a, b);
LL ans = 0;
for(int i = 1, last; i <= a; i = last + 1)
{
last = min(a/(a/i), b/(b/i));
ans += (a / i) * (b / i) * (f[last] - f[i - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
bzoj 3309 反演的更多相关文章
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- BZOJ 3309 莫比乌斯反演
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1} ...
- bzoj 3309 DZY Loves Math——反演+线性筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
随机推荐
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.18
1.当天站立式会议照片 本次会议在5号公寓312召开,本次会议内容:①:熟悉每个人想做的模块.②:根据老师的要求将项目划分成一系列小任务.③:在上次会议内容完成的基础上增加新的任务. 2.每个人的工作 ...
- 词频统计Web工程
本次将原本控制台工程迁移到了web工程上.. 需求: 1.把程序迁移到web平台,通过用户上传TXT的方式接收文件: 2.在页面上给出链接 (如果有封皮.作者.字数.页数等信息更佳)或表格,展示经典英 ...
- js dom学习
创建dom元素 var oLi = document.creteElement('li'); //创建livar aLi = oUl.getElementsByTagName('li');oLi.in ...
- 每个Android开发者必须知道的内存管理知识
原文:每个Android开发者必须知道的内存管理知识 拷贝在此处,以备后续查看. 相信一步步走过来的Android从业者,每个人都会遇到OOM的情况.如何避免和防范OOM的出现,对于每一个程序员来说确 ...
- java 数据结构与算法---栈
原理来自百度百科 一.栈的定义 栈是一种只能在一端进行插入和删除操作的特殊线性表:它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数 ...
- Xwork概况 XWork是一个标准的Command模式实现,并且完全从web层脱离出来。Xwork提供了很多核心功能:前端拦截机(interceptor),运行时表单属性验证,类型转换,强大的表达式语言(OGNL – the Object Graph NavigationLanguage),IoC(Inversion of Control反转控制)容器等。 ----------------
Xwork概况 XWork是一个标准的Command模式实现,并且完全从web层脱离出来.Xwork提供了很多核心功能:前端拦截机(interceptor),运行时表单属性验证,类型转换,强大的表达式 ...
- MySQL 大表备份、改表
0.背景: 需要对一个千万行数据的表新增字段,具体操作: a.dump 数据 b.delete 数据 c.alter 表 MySQL 版本为5.5,alter表时MySQL会锁表:表行数虽多,当数据 ...
- hbase 跳转过滤器skipfilter
用于跳过整个行键,需要和其他过滤器一起使用,本例SkipFilter和ValueFilter过滤器组合使用过滤不符合条件的行, 如果不配合SkipFiter,ValueFilter只过滤单元值包含的列 ...
- hbase 原子操作cas
在高并发的情况下,对数据row1 column=cf1:qual1, timestamp=1, value=val1的插入或者更新可能会导致非预期的情况, 例如:原本客户端A需要在value=val ...
- Alpha 冲刺 —— 十分之七
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 学习MSI.CUDA 试运行软件并调试 ...