P3155 [CQOI2009]叶子的染色

题目描述

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

输入输出格式

输入格式:

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,...,m,其中编号1,2,... ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],...,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

输出格式:

仅一个数,即着色结点数的最小值。


由题意可反应到应该是树形动归。

先考虑一个父节点和一个子节点。 若子节点的颜色和父节点相同, 那我们子节点不染色,撤销子节点的颜色, 显然不造成影响。弱父节点与子节点颜色不一样, 两个点都染色即可。

扩展到多个子节点显然也成立, 即遵照: 同色 - 1,异色不变 即可

所以归纳一下, 无论如何, 我们在讨论的这个父节点总要在这一步染色, (在以后会不会把颜色撤销还不知道), 所以我们用两个数组 \(dp[i][2]\) 来表示第 \(i\) 号点分别染黑色、白色的最少用点数。 此时分类讨论, 有状态转移方程: $$dp[u][0] = 1 + \sum \min(dp[v][0] - 1,dp[v][1])$$$$dp[u][1] = 1 + \sum \min(dp[v][1] - 1,dp[v][0])$$

边界显然在叶子节点: 对于有需要的节点, 染成需要颜色则为 \(1\) ,不需要颜色赋值为无穷大以排除影响。 其他节点因为在动归本次时会加一个 \(1\) ,故不是叶子节点时自己加上 \(1\) 。

P.s. 当然我们需要判断一下此点的儿子是否有需要颜色, 若所有子节点都没有需要, 则将自己置为 \(0\) 这题数据较水加上偷点小懒, 这里就不特判啦

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int RD(){
int flag = 1, out = 0;char c = getchar();
while(c < '0' || c > '9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 1000019, INF = 1e9 + 19;
int head[maxn], nume = 1;
struct Node{
int u, v, dis, nxt;
}E[maxn << 3];
void add(int u, int v, int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int num, na;
int dp[maxn][2];
int root;
void dfs(int u, int F){
bool flag = 0;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
if(v == F)continue;
dfs(v, u);
flag = 1;
dp[u][0] += min(dp[v][0] - 1, dp[v][1]);
dp[u][1] += min(dp[v][1] - 1, dp[v][0]);
}
if(flag)dp[u][0]++, dp[u][1]++;
}
int main(){
num = RD();na = RD();
for(int i = 1;i <= na;i++){
int x = RD();
if(x == 0)dp[i][0] = 1, dp[i][1] = INF;
else dp[i][0] = INF, dp[i][1] = 1;
}
for(int i = 1;i <= num - 1;i++){
int u = RD(), v = RD();
add(u, v, 1),add(v, u, 1);
}
root = na + 1;
dfs(root, -1);
int ans = min(dp[root][0], dp[root][1]);
printf("%d\n", ans);
return 0;
}

P3155 [CQOI2009]叶子的染色的更多相关文章

  1. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  2. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  3. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  4. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  5. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  6. CQOI2009叶子的染色

    叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一 ...

  7. [CQOI2009]叶子的染色【性质+树形Dp】

    Online Judge:Bzoj1304,Luogu P3155 Label:无根树,树形Dp 题目描述 给定一棵\(N\)个节点的无根树,它一共有\(K\)个叶子节点.你可以选择一个度数大于1的节 ...

  8. [CQOI2009]叶子的染色

    传送门:https://www.luogu.org/problemnew/show/P3155 一道挺水的树形dp题,然后我因为一个挺智障的问题debug了一晚上…… 嗯……首先想,如果一个点的颜色和 ...

  9. bzoj千题计划233:bzoj 1304: [CQOI2009]叶子的染色

    http://www.lydsy.com/JudgeOnline/problem.php?id=1304 结论1:根节点一定染色 如果根节点没有染色,选择其子节点的一个颜色,那么所有这个颜色的子节点都 ...

随机推荐

  1. java第一次实验报告

    北京电子科技学院(BESTI) 实    验    报    告 课程名称:java实验      班级:1352         姓名:潘恒      学号:20135209 成绩:         ...

  2. C++:类中的赋值函数

    先来看一个例子: #include<iostream> #include<string> using namespace std; class Student{ public: ...

  3. ListView高效分页

    使用控件自带的分页功能时,会先将所查询的数据全部加载出来,若数据量较大,则造成浏览器端等待时间过长. 然而在庞大的数据量,用户所需要的不过是那么几条,甚至只要其中的一条数据,所以,为了减少开销,每次只 ...

  4. 《UML大战需求分析》-读后感二

    活动图将流成分解为一个一个的活动,通过活动的先后顺序来展示流程,而状态机图是从某个事物的状态是如何转变的角度来展示流程,首先确定事物,然后找出状态,状态之间的箭头叫转换,箭头上的文字说明了是什么事情导 ...

  5. sqlDataAdapter和SqlCommand的区别

    因为DataSet是离线的,所以SqlDataAdapter这个对象是连接DataSet和数据库的桥梁,所有对DataSet的操作(填充,更新等)都要通过他 ado.net数据访问有两种方式: 1.离 ...

  6. 关于mybatis的思考(1)——mybatis的使用实例

    架构分析 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索.MyBatis 可以使用简 ...

  7. BETA-4

    前言 我们居然又冲刺了·四 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 整理了一丢丢代码 接下来的计划 认真复习准备考试,挤时间把软工搞定 还剩下哪些 ...

  8. Java程序设计实践

    先放上需求同时也是作业的地址:http://www.cnblogs.com/xinz/p/7417960.html 这是我第一次接触一个完整的项目的开发,在这里分享一下整个项目(或者作业?)的设计过程 ...

  9. iOS开发短信验证码封装 方便好用

    ---恢复内容开始--- 1.RootViewControler//  Copyright © 2016年 Chason. All rights reserved.// #import "V ...

  10. pygame学习笔记(1)——安装及矩形、圆型画图

    pygame是一个设计用来开发游戏的python模块,其实说白了和time.os.sys都是一样的东东.今天开始正式学习pygame,下载地址:www.pygame.org.下载后安装完成即可,在py ...