本篇博客介绍最经典的手写数字识别Mnist在tf上的应用。

Mnist有两种模型,一种是将其数据集看作是没有关系的像素值点,用softmax回归来做。另一种就是利用卷积神经网络,考虑局部图片像素的相关性,显然第二种方法明显优于第一种方法,下面主要介绍这两种方法。

  • softmax回归 

mnist.py

import tensorflow as tf
import input_data
#read the mnist data
mnist = input_data.read_data_sets("mnist/", one_hot=True)
#create the softmax model
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
#the ground truth
y_ = tf.placeholder("float", [None,10])
#calculate the cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#define the model loss in order to minimize the cross_entropy by a learning rate of 0.01
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#initialize all variables
init = tf.global_variables_initializer()
#start Session
sess = tf.Session()
#run the Session
sess.run(init)
#every batch feed the parameter of placeholder and train the model
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#calculate the classification model mAP in test set
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

 input_data.py文件

# This is input_data.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function # pylint: disable=unused-import
import gzip
import os
import tempfile import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
# pylint: enable=unused-import

本次测试的精度是:91.47%

  • 卷积神经网络

虽然上面我们得到了91%左右的精度,然而我们并没有满足,因为对于这一个经典的简单问题来说,如果只是百分之91,只能说明技术仍然落后,泡沫异常严重,然而事实情况是我们可以实现99.99%的精度,当然多来几个9,也是可以的,这很大程度上归功于深度学习技术的发展,但理论上仍然面临重大挑战和变革。不曾想,在某某实验室,又在某某角落里,有着某某某,悄无声息,却给整个世纪带来了惊喜!

mnistconv.py

import input_data
import tensorflow as tf
#read the data
mnist = input_data.read_data_sets('mnist', one_hot=True)
#create the model of iput and output
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
#start the Session
sess = tf.InteractiveSession()
#weight parameters initial function
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
#bias parameters initial function
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
#convolution layer function
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
#pooling layer function
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
#the first convolution and pooling layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#the second convolution and pooling layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#the fully connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#create dropout layer for fc layer
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#softmax classification layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
#calculate the cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
#Adam algorithm
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#for training
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print ("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# test batch,the raw code will run out of GPU memory for my machine,so one batch of 50 images for 10 times,then calculate the mAP.
a = 10
b = 50
sum = 0
for i in range(a):
testSet = mnist.test.next_batch(b)
c = accuracy.eval(feed_dict={x: testSet[0], y_: testSet[1], keep_prob: 1.0})
sum += c * b
#print("test accuracy %g" % c)
print("test accuracy %g" % (sum / (b * a)))

在这里需要解释清楚的是,tf的卷积和池化层参数,它们的形式如下:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
tf.nn.max_pool(value, ksize, strides, padding, name=None)

这里显然用的是5*5的kernel,而stride和ksize参数所表示的四维tensor,其实第二位和第三位表示在height和width上的操作,而第一和第四位表示在batch和channel上的操作,更值得说明的是,此处是28*28变成14*14再变成7*7,因为卷积并没有改变特征图大小,而池化减半,主要是这里卷积设置padding的参数‘SAME’,表示输入输出不改变大小,默认用0填充,另一种‘VALID’方式表示不填充。

训练和测试结果如下:

step 0, training accuracy 0.18
step 100, training accuracy 0.74
step 200, training accuracy 0.9
step 300, training accuracy 0.92
step 400, training accuracy 0.92
step 500, training accuracy 0.92
step 600, training accuracy 0.92
step 700, training accuracy 0.96
step 800, training accuracy 0.98
step 900, training accuracy 1
step 1000, training accuracy 1
step 1100, training accuracy 0.96
step 1200, training accuracy 0.98
step 1300, training accuracy 0.94
step 1400, training accuracy 0.96
step 1500, training accuracy 0.98
step 1600, training accuracy 1
step 1700, training accuracy 0.94
step 1800, training accuracy 0.98
step 1900, training accuracy 0.98
step 2000, training accuracy 0.98
step 2100, training accuracy 0.98
step 2200, training accuracy 0.96
step 2300, training accuracy 1
step 2400, training accuracy 0.98
step 2500, training accuracy 0.96
step 2600, training accuracy 1
step 2700, training accuracy 0.98
step 2800, training accuracy 0.96
step 2900, training accuracy 0.98
step 3000, training accuracy 0.96
step 3100, training accuracy 1
step 3200, training accuracy 1
step 3300, training accuracy 1
step 3400, training accuracy 0.98
step 3500, training accuracy 1
step 3600, training accuracy 0.98
step 3700, training accuracy 0.98
step 3800, training accuracy 0.98
step 3900, training accuracy 1
step 4000, training accuracy 0.98
step 4100, training accuracy 1
step 4200, training accuracy 1
step 4300, training accuracy 0.98
step 4400, training accuracy 1
step 4500, training accuracy 0.98
step 4600, training accuracy 1
step 4700, training accuracy 1
step 4800, training accuracy 0.98
step 4900, training accuracy 1
step 5000, training accuracy 0.98
step 5100, training accuracy 1
step 5200, training accuracy 1
step 5300, training accuracy 1
step 5400, training accuracy 0.98
step 5500, training accuracy 1
step 5600, training accuracy 1
step 5700, training accuracy 1
step 5800, training accuracy 1
step 5900, training accuracy 1
step 6000, training accuracy 0.98
step 6100, training accuracy 0.98
step 6200, training accuracy 1
step 6300, training accuracy 0.98
step 6400, training accuracy 1
step 6500, training accuracy 0.98
step 6600, training accuracy 1
step 6700, training accuracy 1
step 6800, training accuracy 1
step 6900, training accuracy 0.98
step 7000, training accuracy 1
step 7100, training accuracy 0.98
step 7200, training accuracy 1
step 7300, training accuracy 0.98
step 7400, training accuracy 1
step 7500, training accuracy 0.96
step 7600, training accuracy 1
step 7700, training accuracy 1
step 7800, training accuracy 1
step 7900, training accuracy 0.98
step 8000, training accuracy 1
step 8100, training accuracy 1
step 8200, training accuracy 0.98
step 8300, training accuracy 1
step 8400, training accuracy 1
step 8500, training accuracy 1
step 8600, training accuracy 1
step 8700, training accuracy 0.98
step 8800, training accuracy 1
step 8900, training accuracy 0.98
step 9000, training accuracy 1
step 9100, training accuracy 0.98
step 9200, training accuracy 1
step 9300, training accuracy 1
step 9400, training accuracy 1
step 9500, training accuracy 1
step 9600, training accuracy 1
step 9700, training accuracy 1
step 9800, training accuracy 1
step 9900, training accuracy 1
step 10000, training accuracy 1
step 10100, training accuracy 1
step 10200, training accuracy 1
step 10300, training accuracy 0.98
step 10400, training accuracy 0.98
step 10500, training accuracy 1
step 10600, training accuracy 1
step 10700, training accuracy 0.98
step 10800, training accuracy 1
step 10900, training accuracy 1
step 11000, training accuracy 0.98
step 11100, training accuracy 1
step 11200, training accuracy 1
step 11300, training accuracy 1
step 11400, training accuracy 1
step 11500, training accuracy 1
step 11600, training accuracy 1
step 11700, training accuracy 0.98
step 11800, training accuracy 1
step 11900, training accuracy 1
step 12000, training accuracy 1
step 12100, training accuracy 1
step 12200, training accuracy 1
step 12300, training accuracy 1
step 12400, training accuracy 1
step 12500, training accuracy 1
step 12600, training accuracy 0.98
step 12700, training accuracy 1
step 12800, training accuracy 1
step 12900, training accuracy 1
step 13000, training accuracy 0.98
step 13100, training accuracy 1
step 13200, training accuracy 1
step 13300, training accuracy 1
step 13400, training accuracy 1
step 13500, training accuracy 1
step 13600, training accuracy 0.98
step 13700, training accuracy 1
step 13800, training accuracy 1
step 13900, training accuracy 1
step 14000, training accuracy 1
step 14100, training accuracy 1
step 14200, training accuracy 1
step 14300, training accuracy 1
step 14400, training accuracy 1
step 14500, training accuracy 1
step 14600, training accuracy 1
step 14700, training accuracy 1
step 14800, training accuracy 1
step 14900, training accuracy 1
step 15000, training accuracy 1
step 15100, training accuracy 1
step 15200, training accuracy 1
step 15300, training accuracy 1
step 15400, training accuracy 1
step 15500, training accuracy 0.98
step 15600, training accuracy 1
step 15700, training accuracy 1
step 15800, training accuracy 1
step 15900, training accuracy 1
step 16000, training accuracy 1
step 16100, training accuracy 1
step 16200, training accuracy 1
step 16300, training accuracy 1
step 16400, training accuracy 1
step 16500, training accuracy 1
step 16600, training accuracy 1
step 16700, training accuracy 1
step 16800, training accuracy 1
step 16900, training accuracy 1
step 17000, training accuracy 1
step 17100, training accuracy 1
step 17200, training accuracy 1
step 17300, training accuracy 1
step 17400, training accuracy 1
step 17500, training accuracy 1
step 17600, training accuracy 1
step 17700, training accuracy 1
step 17800, training accuracy 1
step 17900, training accuracy 1
step 18000, training accuracy 1
step 18100, training accuracy 1
step 18200, training accuracy 1
step 18300, training accuracy 1
step 18400, training accuracy 1
step 18500, training accuracy 1
step 18600, training accuracy 0.98
step 18700, training accuracy 1
step 18800, training accuracy 1
step 18900, training accuracy 1
step 19000, training accuracy 1
step 19100, training accuracy 1
step 19200, training accuracy 1
step 19300, training accuracy 1
step 19400, training accuracy 1
step 19500, training accuracy 1
step 19600, training accuracy 1
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
test accuracy 0.988

最后只有98.8%。

TensorFlow在win10上的安装与使用(三)的更多相关文章

  1. TensorFlow在win10上的安装与使用(二)

    在上篇博客中已经详细的介绍了tf的安装,下面就让我们正式进入tensorflow的使用,介绍以下tf的特征. 首先tf有它独特的特征,我们在使用之前必须知晓: 使用图 (graph) 来表示计算任务, ...

  2. 在win10上同时安装Python2/Python3

    如何在win10上同时安装python2和python3? 为了满足日常工作或者学习的需要,我们可能会经常用到python2和python3,下面是给大家在win10上同时安装两个版本的python的 ...

  3. Tensorflow在win10下的安装(CPU版本)

    环境:win10,64位 1.卸载python3.7,安装python3.6 由于之前已经安装了python,到tensorflow网站查看tensorflow的支持环境,https://tensor ...

  4. TensorFlow在windows10上的安装与使用(一)

    随着近两年tensorflow越来越火,在一台新win10系统上装tensorflow并记录安装过程.华硕最近的 Geforce 940mx的机子. TensorFlow是一个采用数据流图(data ...

  5. Oracle12c在Win10上的安装配置实践

    1.环境 操作系统:Win10专业版(64位) 数据库:Oracle 12c Release 2(Version 12.2.0.1.0,64位) 2.下载Oracle12c oracle官网下载地址: ...

  6. GPU版的tensorflow在windows上的安装时的错误解决方案

    1.用vs编译cuda的sample时会提示找不到"d3dx9.h"."d3dx10.h"."d3dx11.h"头文件的错误,如果没有安装这 ...

  7. 如何在win10上同时安装python2和python3

    哎,其实本人已经用惯了python2,听说python3的语法有很多不一样的地方,那我之前写的算法改起来岂不是日了狗了吗?所以一直没改用python3.但是谷歌的那个TensorFlow,在windo ...

  8. win10上VMare安装Centos7并使用Xshell连接Centos

      一.CentOS 使用VMware虚拟机如何上网 1.宿主机的虚拟网关VMnet8的IP设置为自动获取. (1)打开控制面板:“控制面板” ---> “网络和 Internet” ---&g ...

  9. Memcached 之在win10上的安装

    一.下载 http://static.runoob.com/download/memcached-win64-1.4.4-14.zip 二.安装 memcached <1.4.5 版本安装 1. ...

随机推荐

  1. Linux 下安装mysql 8.0.11(CentOS 7.4 系统)

    CentOS 7 自带MariaDB (前mysql开发工程师开发的,因此与吗,mysql 有很多相似之处) 1.检查卸载自带的MariaDB rpm -qa|grep mariadb //查询出来已 ...

  2. java类和对象

    类是对象的抽象 对象是类的一个实例类 对象 = new 类();拿对象可以操作这个类里的方法 java类与对象的区别是个老生常谈的问题,刚开始学java的时候就开始接触类和对象,今天来总结一下他们之间 ...

  3. how to get iframe dom in js

    how to get iframe dom in js https://stackoverflow.com/questions/3999101/get-iframes-document-from-ja ...

  4. js本地储存userData实例

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  5. Linux相关——记录gdb基本操作(持续更新)

    -----------2018.9.26更新标记----------- gdb的确是个很强大的东西啊,这里记录一下gdb的基本操作吧 后续可能会补充,但暂时感觉够用了就不写多了. 首先是ubuntu终 ...

  6. CF1088F Ehab and a weird weight formula 贪心 倍增

    CF1088F Ehab and a weird weight formula 题意 给定一棵树,点有点权,其中这棵树满足除了权值最小的点外,每个点至少有一个点权小于它的相邻点. 要求你重新构建这棵树 ...

  7. 创建一个背景透明的UIViewController

    有时候想让UIViewController背景透明,让我们可以看到下层的UI,直接设置它的背景颜色为clearColor(),还是有黑色的默认背景在那里.下面是解决该问题的例子: 在storyboar ...

  8. 谷歌钦定的编程语言Kotlin大揭秘

    第一时间关注程序猿(媛)身边的故事 谷歌钦定的编程语言Kotlin大揭秘 语法+高级特性+实现原理:移动开发者升职加薪宝典! 谷歌作为世界级的科技公司巨头,强悍的技术研发与创新能力使其一直是业界的楷模 ...

  9. C++模板源代码的三种组织方式

    模板代码和非模板代码是有区别的,如果像非模板代码那样把模板的声明放在头文件.h中,把模板的定义放在源文件.cpp中,那么使用这个模板时会得到一个链接错误.这个错误的原因在于,模板的定义还没有被实例化. ...

  10. 洛谷 P2389 电脑班的裁员 解题报告

    题意: 给定一段长为N的序列,选取其中的至多M段使这些子段和最大. 当N=1000时,我们可以采用动态规划解法 令\(dp[i][j][k]\)代表当前选至位置\(i\)处于第\(j\)段当前是否选取 ...