BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接
题解
显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质
这意味着什么呢?
\(dfs\)树深度不超过\(10\)
\(10\)很小呐,可以状压了呢
我们发现一个点不但收祖先影响,而且受儿子影响,比较难处理
我们就先处理该点及其祖先,然后更新完儿子之后反过来用儿子更新根,就使得全局合法了
一个点显然有三种状态:
0.没被覆盖
1.被覆盖但是没有建站
2.建站
设\(f[d][s]\)表示节点\(u\)【深度为\(d\)】,其祖先【包括\(u\)】状态为\(s\)的最优解
\(dfs\)进来的时候,我们用父亲的答案更新\(u\)
\(dfs\)结束的时候,我们用儿子的答案替代\(u\)的答案,保证全局合法
复杂度\(O((n + m)3^{10})\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 20005,maxm = 50005,M = 59050,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
int n,m,C[maxn],dep[maxn],vis[maxn],bin[100];
int f[11][M],st[maxn],top; //0 not yet 1 ok but empty 2 ok and full
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
inline int min(int a,int b){return a < b ? a : b;}
void dfs(int u){
vis[u] = true;
int maxv = bin[dep[u]] - 1,d = dep[u]; top = 0;
for (int i = 0; i < bin[dep[u] + 1]; i++) f[d][i] = INF;
Redge(u) if (vis[to = ed[k].to]) st[++top] = dep[to];
if (!d) f[0][0] = 0,f[0][1] = INF,f[0][2] = C[u];
for (int s = 0; s <= maxv; s++){
int t = 0,v,p,e = s + 2 * bin[d];
REP(i,top){
v = st[i]; p = s / bin[v] % 3;
if (p == 2) t = 1;
else if (!p) e += bin[v];
}
f[d][s + t * bin[d]] = min(f[d][s + t * bin[d]],f[d - 1][s]);
f[d][e] = min(f[d][e],f[d - 1][s] + C[u]);
}
Redge(u) if (!vis[to = ed[k].to]){
dep[to] = dep[u] + 1;
dfs(to);
for (int s = 0; s < bin[d + 1]; s++)
f[d][s] = min(f[d + 1][s + bin[d + 1]],f[d + 1][s + 2 * bin[d + 1]]);
}
}
int main(){
bin[0] = 1; for (int i = 1; i <= 13; i++) bin[i] = bin[i - 1] * 3;
n = read(); m = read();
REP(i,n) C[i] = read();
while (m--) build(read(),read());
int ans = 0;
for (int i = 1; i <= n; i++)
if (!vis[i]) dfs(i),ans += min(f[0][1],f[0][2]);
printf("%d\n",ans);
return 0;
}
BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】的更多相关文章
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)
题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4455 https://loj.ac/problem/2091 题解 很不错的一道题.(不过在当 ...
- HDU 4049 Tourism Planning(状压DP)题解
题意:m个城市,n个人,让这n个人按固定顺序走遍m个城市.每个城市有一个单人票价pi.每个人在每个城市能获得vij的价值.如果多个人在同一城市,那么会额外获得价值,给出一张n * n价值表,额外价值为 ...
随机推荐
- .NetCore mvc Ajax Post数据到后端
在前端页面中,如果没有表单,想把复杂对象提交到后端,可使用以下方法 后端Controller中定义以下方法: [HttpPost] public int AddSolution([FromBody]S ...
- kubernetes高可用设计-master节点和kubectl
部署master 节点 上一遍是CA证书和etcd的部署,这一篇继续搭建k8s,废话不多说.开始部署. kubernetes master 节点包含的组件有: kube-apiserver kube- ...
- python-gevent模块(自动切换io的协程)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 import gevent def foo() ...
- windows离线补丁包下载路径-云盾安骑士
我们有一台阿里云服务器,只有内网可以访问,无外网资源. 阿里云账户邮箱反复收到阿里云云盾的漏洞报警通知,推荐安装安骑士组件. 安骑士组件是收费服务.阿里云服务器,无法连上外网,无法自动安装补丁.需要将 ...
- python3.6环境中django2.0与xadmin0.6结合的后台管理
1.xadmin简介 django的admin管理后台页面很简洁,对个人来说做后台管理非常简单:xadmin的比较admin优化界面,看着也舒服. xadmin界面效果如下: 2.xadmin安装 从 ...
- 使用FFMPEG 压缩png图片 与tinypng压缩结果对比
Tinypng https://tinypng.com/ 一个在线png压缩工具 FFmpeg https://ffmpeg.org/download.html 原图 903 kb Tinypng压 ...
- mv命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/piaozhe116/p/6084214.html mv命令是move的缩写,可以用来移动文件或者将文件改名(move ...
- 允许使用root远程ssh登录(Ubuntu 16.04)
今天装了ubuntu16和17,发现还是ubuntu16看着顺眼,所以以后决定用ubuntu16, 然后想换语言发现更新失败,所以想换成中国的源,但是vm里面复制粘贴不了,所以想用secureCRT连 ...
- vim搭建C编程IDE
曾经在一篇关于vim技巧的文章里有一句话:"世界上只有三种编辑器,EMACS.VIM和其它." 我不知道这是不是太过于绝对了,但是从我所看到的每一篇linux下编程以及文字编辑的文 ...
- 10_Java面向对象_第10天(继承、抽象类)_讲义
今日内容介绍 1.继承 2.抽象类 3.综合案例---员工类系列定义 01继承的概述 *A:继承的概念 *a:继承描述的是事物之间的所属关系,通过继承可以使多种事物之间形成一种关系体系 *b:在Jav ...