题目链接

BZOJ3142

题解

题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\)

题目中\(K(M - 1) < N\)的限制意味着,除了第一个数外,别的数可以随便选,然后第一个数就限制在\(N - \sum a_i\)之间

所以方案数为

\[\sum\limits_{a_1 = 1}^{M} \sum\limits_{a_2 = 1}^{M} \sum\limits_{a_3 = 1}^{M} \dots \sum\limits_{a_{K - 1} = 1}^{M} (N - \sum\limits_{i = 1}^{K - 1}a_i)
\]

展开化简得

\[NM^{K - 1} - (K - 1)M^{K - 2}
\]

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f;
const double eps = 1e-9;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
LL N,M,K,P;
inline LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) re = re * a % P;
return re;
}
int main(){
N = read(); K = read(); M = read(); P = read();
if (K == 1){printf("%lld\n",N); return 0;}
printf("%lld\n",((N % P * qpow(M,K - 1) % P - (M + 1) * M / 2 % P * (K - 1) % P * qpow(M,K - 2) % P) % P + P) % P);
return 0;
}

BZOJ3142 [Hnoi2013]数列 【组合数学】的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  3. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  4. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  5. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  6. bzoj3142[Hnoi2013]数列 组合

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  7. Luogu P3228 HNOI2013 数列 组合数学

    题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

随机推荐

  1. Laya资源加载小记

    Laya.Loader负责资源的加载逻辑,被LoaderManager管理. Laya支持多种类型资源加载,也支持自定义类型加载.不同类型的加载方式可能不同. Laya.Loader缓存已经被加载过得 ...

  2. 客户端传入数据的校验-RestController进阶

    使用Hibernate Validator进行数据校验 Bean Validation注解(需要加入相关依赖,在SpringBoot中可以直接使用,SpringBoot会帮我们直接加入) @Null ...

  3. Windows Server平台 confluence6.7.1安装与破解

    1.1硬件需求建议: CPU:32/64 bit 2.27GHz双核心以上之CPU: 内存:8GB以上: 硬盘:300GB,7200转以上: 建议数据库.Confluence等各自独立一台服务器. 1 ...

  4. 《The Mythical Man-Month(人月神话)》读后感(1)

    临近考试周,这里我通过平时阅读的<人月神话>十九个章节和知乎.简书等网页中网友们对<人月神话>的读后感,对书中各个章节进行简单的总结,以下均为个人手打观点的思考与整合,仅供大家 ...

  5. WPF 自定义 MessageBox (相对完善版 v1.0.0.6)

    基于WPF的自定义 MessageBox. 众所周知WPF界面美观.大多数WPF元素都可以简单的修改其样式,从而达到程序的风格统一.可是当你不得不弹出一个消息框通知用户消息时(虽然很不建议在程序中频繁 ...

  6. Vue的computed计算属性是如何实现的

    一个开始 有如下代码,full是一个计算属性,开始,他的值是'hello world',1s后,msg变成了‘I like’, full的值同步变成了'I like world';其原理解析来看一下. ...

  7. JS进阶系列之闭包

    刚刚总结完作用域链,我觉得很有必要马上对闭包总结一下,因为,之前也写过自己对闭包的理解,那时候只知道,闭包就是可以访问别的函数变量的函数,就是在函数里面的函数就叫做闭包,可是并没有深入探究,为什么,可 ...

  8. Hibernate笔记④--一级二级缓存、N+1问题、saveorupdate、实例代码

    一级缓存及二级缓存 一级缓存也是Session 缓存     一个链接用户的多次查询使用缓存     跨用户 则无缓存     hibernate自带的 get和load都会填充并利用一级缓存 二级缓 ...

  9. mvc学习-编辑提交需要注意-mvc重点

    示例代码: // GET: /Movies/Edit/5 public ActionResult Edit(int? id) { if (id == null) { return new HttpSt ...

  10. Week2-作业1-part2.阅读与思考

    第一章.概论 原文: 在成熟的航空工业中,一个飞机发动机从构思到最后运行,不知道经历过多少人.多少工序.多少流程.多少相关知识的验证.我们无法想象,某个商用型号的发动机在飞行时发现问题,最初的设计师会 ...