BZOJ3142 [Hnoi2013]数列 【组合数学】
题目链接
题解
题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\)
题目中\(K(M - 1) < N\)的限制意味着,除了第一个数外,别的数可以随便选,然后第一个数就限制在\(N - \sum a_i\)之间
所以方案数为
\]
展开化简得
\]
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f;
const double eps = 1e-9;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
LL N,M,K,P;
inline LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) re = re * a % P;
return re;
}
int main(){
N = read(); K = read(); M = read(); P = read();
if (K == 1){printf("%lld\n",N); return 0;}
printf("%lld\n",((N % P * qpow(M,K - 1) % P - (M + 1) * M / 2 % P * (K - 1) % P * qpow(M,K - 2) % P) % P + P) % P);
return 0;
}
BZOJ3142 [Hnoi2013]数列 【组合数学】的更多相关文章
- [BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1721 Solved: 854[Submit][Status][ ...
- BZOJ3142 HNOI2013数列(组合数学)
考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj3142[Hnoi2013]数列 组合
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- Luogu P3228 HNOI2013 数列 组合数学
题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
随机推荐
- 虚拟机中安装MAC OS X教程(适用所有电脑方法,特别是cpu不支持硬件虚拟化的电脑)
前言 之前写了一篇在Windows上搭建Object-C开发环境,并且写了一个HelloWorld程序.但真正开发苹果软件是在MAC OS X系统中(以下简称OSX)中.买不起MacBook,也没有O ...
- 入门向:南邮CTF_ReadAsm2_WP
题目链接:http://ctf.nuptzj.cn/challenges#ReadAsm2 我比较菜,所以把思路全部敲上来了. 题目很明确告诉我们,这道题考察阅读汇编代码的能力. 在对编译环境和调用约 ...
- Binary Tree的3种非Recursive遍历
Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...
- BugPhobia贡献篇章:团队贡献分值与转会确定
0x01 :无言 0x02 :团队贡献分说明 (1202)冯志睿 54 (1156)李入云 43 (1188)李云涛 56 (1184)马腾跃 26 (1197)钱林琛 60 (1100)王鹿鸣 63 ...
- WebGL学习笔记五
本章主要是对纹理的进一步讲解,我们很多时候需要将现实中已有 的图片在网页中展示出来而不是去创造图片,通过纹理 我们可以将光栅化的图形和图片纹理形成映射并且将图片在图形 中显示出来.基本过程与前几章一致 ...
- Hibernate 与 mybatis 区别
JAVA面试中问及HIBERNATE与 MYBATIS的对比,在这里做一下总结 我是一名java开发人员,hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践 ...
- b1
组长:吴晓晖 过去两天完成了哪些任务: 代码重构进行中,界面,预计两个beta单位完成 展示GitHub当日代码/文档签入记录 接下来的计划 更加人性化的推荐算法 还剩下哪些任务 有哪些困难 有哪些收 ...
- struts2返回List json
利用struts2-json-plugin 之前一直输出null.... 按网上的配也不行 后来不知道怎么突然可以了 赶紧记录一下 private List<Shop> moneyshop ...
- Beta冲刺 (7/7)
队名:天机组 组员1友林 228(组长) 今日完成:封装代码 明天计划: 剩余任务:优化网络通讯机制 主要困难:暂无 收获及疑问:暂无 组员2方宜 225 今日完成:优化了一部分活动 明天计划:剩余活 ...
- 使用百度地图api可视化聚类结果
1.写在前面 上接YFCC 100M数据集分析笔记,在对聚类出的照片GEO集聚类后,为了方便检测聚类结果,我们显示直接采用了 python 的 matplotlib 库以经纬度为坐标画出聚类结果,但发 ...