题目链接

BZOJ3142

题解

题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\)

题目中\(K(M - 1) < N\)的限制意味着,除了第一个数外,别的数可以随便选,然后第一个数就限制在\(N - \sum a_i\)之间

所以方案数为

\[\sum\limits_{a_1 = 1}^{M} \sum\limits_{a_2 = 1}^{M} \sum\limits_{a_3 = 1}^{M} \dots \sum\limits_{a_{K - 1} = 1}^{M} (N - \sum\limits_{i = 1}^{K - 1}a_i)
\]

展开化简得

\[NM^{K - 1} - (K - 1)M^{K - 2}
\]

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f;
const double eps = 1e-9;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
LL N,M,K,P;
inline LL qpow(LL a,LL b){
LL re = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) re = re * a % P;
return re;
}
int main(){
N = read(); K = read(); M = read(); P = read();
if (K == 1){printf("%lld\n",N); return 0;}
printf("%lld\n",((N % P * qpow(M,K - 1) % P - (M + 1) * M / 2 % P * (K - 1) % P * qpow(M,K - 2) % P) % P + P) % P);
return 0;
}

BZOJ3142 [Hnoi2013]数列 【组合数学】的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  3. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  4. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  5. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  6. bzoj3142[Hnoi2013]数列 组合

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  7. Luogu P3228 HNOI2013 数列 组合数学

    题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

随机推荐

  1. ThreadPoolExecutor 使用说明

    它是一个ExecutorService,使用线程池中的线程执行提交的任务.通常我们使用Executors框架,定义使用. 线程池主要用来解决两类问题:通过缓存一定数量的可用线程,避免频繁的线程创建,销 ...

  2. openstack系列文章(四)

    学习 openstack 的系列文章 - Nova Nova 基本概念 Nova 架构 openstack Log Nova 组件介绍 Nova 操作介绍 1. Nova 基本概念 Nova 是 op ...

  3. 【RL系列】MDP与DP问题

    推荐阅读顺序: Reinforcement Learning: An Introduction (Drfit)  有限马尔可夫决策过程 动态编程笔记 Dynamic programming in Py ...

  4. shutil模块详解

    python常用模块目录 注意:shutil经常遇到路径需要转义一下才能执行,在字符串前面加 r转义  r" " 1.shutil常用方法 import shutil# 删除目录 ...

  5. Xcode中的文件类型

    文件类型 Xcode中的文件类型,总共4种类型: 1 普通文件(File) 2 Group(在Xcode中就是黄色的文件夹) 3 Folder(在Xcode中就是蓝色的文件夹) 4 Framework ...

  6. Visual Studio win平台 AI环境搭建

    内容提要:我觉得难点主要出在下载上,程序跑的都挺流畅的.下载有时会失败. 1.下载安装git.这一步主要为了下载示例和自动安装环境的python代码,直接去github上用网页下载也是一样的,git不 ...

  7. OO的第一次死亡

    久仰OO大名,总是想着提前做点准备,其实到头来还是什么准备都没有做,所以这学期就是从零开始的面向对象生活,也因此遇到了很多的问题. 第一次作业——多项式加减 第一次作业历来是较为简单的,但是对于面向对 ...

  8. c# combobox向上展开

    1.问题情境:实际中的下拉框默认向下扩展,如果屏幕下方空间不足,会向上扩展. 向下扩展情况下,有时候会超出form窗体. 2.解决办法: 寻找相关属性无果. 退而求其次,重画item的框.发现Draw ...

  9. 《Spring1之第六次站立会议》

    <第六次站立会议> 昨天:向小伙伴们请教了我代码的错误的解决方法以及对TCP/IP协议进行了相关的了解. 今天:我把自己项目工程里的服务器端界面进行了优化和完善. 遇到的问题:觉得做的界面 ...

  10. 第一个spring冲刺

    第一天商量讨论出我们选择的题目为四则运算,虽然在上一个学期已经做过了,但是还有完善的地方,希望能够做出创新,另外下面的燃尽图是我们预测的3个阶段的进度,按情况不同可能实际的情况也不同,但是我们会尽量跟 ...