MT【144】托兰定理【图论】
平面上$2n$个点$(n>1,n\in N)$,无三点共线,任意两点连线段,将其中任意$n^2+1$条线段染红色.
求证:三边都为红色的三角形至少有$\left[\dfrac{2}{3}(n+\dfrac{1}{n})\right]$ 个.
证明:这里染红色的线段看成边,设第$k$个顶点 $v_k$ 引出的边有 $d_k$ 条 $(k=1,2,\cdots,2n)$. 记所有的边组成的集合为 $E$.若$v_iv_j\in E$,则$v_i,v_j$ 向其余$2n-2$个顶点引出$d_i+d_j-2$ 条边.所以至少有$d_i+d_j-2-(2n-2)$对分别由$v_i,v_j$引向同一顶点的边.它们和$v_iv_j$一起构成三角形.所以至少有$d_i+d_j-2n$个三角形包含边$v_iv_j$.又由于图中每个三角形被计算了三次,所以图中至少有$\dfrac{1}{3}\sum\limits_{v_iv_j\in E}{(d_i+d_j-2n)}$个三角形.上述和式中$d_i$ 出现了$d_i$次,条件中已知边数$|E|=n^2+1$,且各顶点引出的边数和边的总数的关系为$\sum\limits_{i=1}^{2n}{d_i}=2(n^2+1)$所以
\begin{align*}
\dfrac{1}{3}\sum\limits_{v_iv_j\in E}{(d_i+d_j-2n)}
&=\dfrac{1}{3}\left(\sum\limits_{i=1}^{2n}{d_i^2}-(n^2+1)2n\right) \\
&\ge\dfrac{1}{3}\left(\dfrac{1}{2n}\left(\sum\limits_{i=1}^{2n}{d_i}\right)^2-(n^2+1)2n\right)\\
&=\dfrac{1}{3}\left(\dfrac{1}{2n}\left(2(n^2+1)\right)^2-(n^2+1)2n\right)\\
&=\dfrac{2}{3}(n+\dfrac{1}{n})
\end{align*}
故有$\left[\dfrac{2}{3}(n+\dfrac{1}{n})\right]$个红色三角形.
$\textbf{注:}$
1.事实上,如果利用数学归纳法我们还可以把结果加强成$n$个红色三角形,详见2017 江苏省赛复赛加试 第三题.
2.类似的还有$1987$年中国国家集训队第二天选拔第六题(最后一题).
3.此题背景是图论里极图理论里的Turán's theorem
MT【144】托兰定理【图论】的更多相关文章
- MT【90】图论基础知识及相关例题
此讲适合参加全国联赛二试的同学 介绍图论和我们学习的一般的知识点比如函数一样,首先要介绍一些定义,只是图论里的定义相对较多,这里给出部分在竞赛中常用到的: 就像学函数的时候,学了定义和相关概念后我们要 ...
- MT【70】图论的一些基本概念例题介绍
此讲是纯粹竞赛,联赛二试题难度.仅供学有余力的学生看看.
- MT【69】斯图姆定理
评:如果说零点存在定理是"只在此山中,云深不知处"的意境.那么斯图姆定理就能处理多项式的零点个数以及定位.
- Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)
大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...
- HDU-6125-Friend-Graph-2017CCPC网络赛(图论,拉姆齐定理-组合数学)
Friend-Graph Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- 图论&数学:拉姆齐(Ramsey)定理
拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识 我们所知道的结论是这样的 6 个人中至少存在3人相互认识或者相互不认识. 该定理等价 ...
- 图论&数学:矩阵树定理
运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...
- 图论:Prufer编码-Cayley定理
BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点 ...
- [51Nod1446] 限制价值树 (容斥+MT定理+折半搜索)
传送门 Description 有N个点(N<=40)标记为0,1,2,...N-1,每个点i有个价值val[i],如果val[i]=-1那么这个点被定义为bad,否则如果val[i] > ...
随机推荐
- android安卓生成密钥keystore(命令控制)
android安卓生成密钥keystore(命令控制) • 配置JDK 详细教程 https://blog.csdn.net/u012934325/article/details/73441617/ ...
- C# 连接MongoDB,含用户验证
配置文件中链接地址:mongodb://test:123456@192.168.168.186:9999/temp 读取配置文件: /// <summary> /// 构造函数 /// & ...
- Robot的使用
在Java中,有一个类,非常神奇,它能帮助你完成某些任务,例如:打开笔记本/QQ等. 今天,我就说一下Robot类的使用方法吧,做一个打开记事本的小程序. 1.准备工作 JDK:不知道的别看了 开发工 ...
- VOT工具操作指南(踩过的坑)
为了运行在VOT里DaSiamRPN,配置了很久环境,我电脑的配置是Ubuntu16.04+MatlabR2018a+pytorch0.3. 下面是一些从网上整理的操作步骤: 1.首先是工具箱的下载: ...
- 机器人平台框架Yarp - Yet another robot platform
简介 ROS有强大和易用的特性,用的人很多,目前已经推出2.0版本,有相关的官网和论坛.然而其缺点也比较明显. 只能基于Ubuntu系统,且一个ROS版本只能对应一个具体的Ubuntu版本 通信 ...
- killall命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/tanga842428/article/details/52474250 Linux系统中的killall命令用于杀死指定名 ...
- Kubernetes探索学习004--深入Kubernetes的Pod
深入研究学习Pod 首先需要认识到Pod才是Kubernetes项目中最小的编排单位原子单位,凡是涉及到调度,网络,存储层面的,基本上都是Pod级别的!官方是用这样的语言来描述的: A Pod is ...
- [zabbix] zabbix数据采集频率、数据连续多次异常触发、告警次数、告警频率
数据采集频率:1分钟采集一次 数据连续多次异常触发:连续三次异常才触发告警 告警次数:告警三次 告警频率:每隔10分钟告警一次 默认模板“Template App Zabbix Agent”监控项“A ...
- Vue 实例详解与生命周期
Vue 实例详解与生命周期 Vue 的实例是 Vue 框架的入口,其实也就是前端的 ViewModel,它包含了页面中的业务逻辑处理.数据模型等,当然它也有自己的一系列的生命周期的事件钩子,辅助我们进 ...
- 团队博客作业Week3 --- 项目选择&&需求疑问
项目选择 经过团队内所有成员一致探讨,我们团队选择完善和改进之学霸系统的第二个子模块,即:网站内容结构定义和数据处理.具体的要求如下:(摘自Xueba系统项目需求) 网站内容结构定义和数据处理(Con ...