平面上$2n$个点$(n>1,n\in N)$,无三点共线,任意两点连线段,将其中任意$n^2+1$条线段染红色.

求证:三边都为红色的三角形至少有$\left[\dfrac{2}{3}(n+\dfrac{1}{n})\right]$ 个.

证明:这里染红色的线段看成边,设第$k$个顶点 $v_k$ 引出的边有 $d_k$ 条 $(k=1,2,\cdots,2n)$. 记所有的边组成的集合为 $E$.若$v_iv_j\in E$,则$v_i,v_j$ 向其余$2n-2$个顶点引出$d_i+d_j-2$ 条边.所以至少有$d_i+d_j-2-(2n-2)$对分别由$v_i,v_j$引向同一顶点的边.它们和$v_iv_j$一起构成三角形.所以至少有$d_i+d_j-2n$个三角形包含边$v_iv_j$.又由于图中每个三角形被计算了三次,所以图中至少有$\dfrac{1}{3}\sum\limits_{v_iv_j\in E}{(d_i+d_j-2n)}$个三角形.上述和式中$d_i$ 出现了$d_i$次,条件中已知边数$|E|=n^2+1$,且各顶点引出的边数和边的总数的关系为$\sum\limits_{i=1}^{2n}{d_i}=2(n^2+1)$所以
\begin{align*}
\dfrac{1}{3}\sum\limits_{v_iv_j\in E}{(d_i+d_j-2n)}
&=\dfrac{1}{3}\left(\sum\limits_{i=1}^{2n}{d_i^2}-(n^2+1)2n\right) \\
&\ge\dfrac{1}{3}\left(\dfrac{1}{2n}\left(\sum\limits_{i=1}^{2n}{d_i}\right)^2-(n^2+1)2n\right)\\
&=\dfrac{1}{3}\left(\dfrac{1}{2n}\left(2(n^2+1)\right)^2-(n^2+1)2n\right)\\
&=\dfrac{2}{3}(n+\dfrac{1}{n})
\end{align*}
故有$\left[\dfrac{2}{3}(n+\dfrac{1}{n})\right]$个红色三角形.

$\textbf{注:}$

1.事实上,如果利用数学归纳法我们还可以把结果加强成$n$个红色三角形,详见2017 江苏省赛复赛加试 第三题.

2.类似的还有$1987$年中国国家集训队第二天选拔第六题(最后一题).
3.此题背景是图论里极图理论里的Turán's theorem

MT【144】托兰定理【图论】的更多相关文章

  1. MT【90】图论基础知识及相关例题

    此讲适合参加全国联赛二试的同学 介绍图论和我们学习的一般的知识点比如函数一样,首先要介绍一些定义,只是图论里的定义相对较多,这里给出部分在竞赛中常用到的: 就像学函数的时候,学了定义和相关概念后我们要 ...

  2. MT【70】图论的一些基本概念例题介绍

    此讲是纯粹竞赛,联赛二试题难度.仅供学有余力的学生看看.

  3. MT【69】斯图姆定理

    评:如果说零点存在定理是"只在此山中,云深不知处"的意境.那么斯图姆定理就能处理多项式的零点个数以及定位.

  4. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  5. HDU-6125-Friend-Graph-2017CCPC网络赛(图论,拉姆齐定理-组合数学)

    Friend-Graph Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  6. 图论&数学:拉姆齐(Ramsey)定理

    拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识 我们所知道的结论是这样的 6 个人中至少存在3人相互认识或者相互不认识. 该定理等价 ...

  7. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

  8. 图论:Prufer编码-Cayley定理

    BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点 ...

  9. [51Nod1446] 限制价值树 (容斥+MT定理+折半搜索)

    传送门 Description 有N个点(N<=40)标记为0,1,2,...N-1,每个点i有个价值val[i],如果val[i]=-1那么这个点被定义为bad,否则如果val[i] > ...

随机推荐

  1. 新特性:postgresql的vacuum漫谈

    文章出处:来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31556440/viewspace-2375109/ 前言 即便是从数据库特性,SQL功能性等方面,Pos ...

  2. 安装keystone时创建用户失败

    系统:centos7.3 版本:openstack ocata 1.问题描述 安装keystone在创建用户时报错: The request you have made requires authen ...

  3. GTK 预置对话框 GtkDialog 文件/颜色/字体选取等 GtkFileSelection

    (GTK2) 文档链接 作用:打开一个预置的对话框,如文件选取对话框 GtkFileSelection 效果下图所示 ╰── GtkDialog ├── GtkAboutDialog ├── GtkC ...

  4. 基于Eclipse下的python图像识别菜鸟版(利用pytesseract以及tesseract)

    这是我注册博客后写的第一篇博客,希望对有相关问题的朋友有帮助. 在图像识别前,首先我们要做好准备工作. 运行环境:windows7及以上版本 运行所需软件:(有基础的可以跳过这一段)eclipse,p ...

  5. 用线性分类器实现预测鸢尾花的种类(python)

    这是个人学习时跑的代码,结果就不贴了,有需要的可以自己运行,仅供参考,有不知道的可以私下交流,有问题也可以联系我.当然了我也只能提供一点建议,毕竟我也只是初学者 第一个页面 # -*- coding: ...

  6. pycharm连接服务器

    python其他知识目录 1. pycharm当做xshell等远程工具,远程连接服务器步骤: 2.pycharm结合Linux服务器进行代码学习: 2.2使用pycharm远程在服务器上修改和执行代 ...

  7. ES6的新特性(23)——ArrayBuffer

    ArrayBuffer ArrayBuffer对象.TypedArray视图和DataView视图是 JavaScript 操作二进制数据的一个接口.这些对象早就存在,属于独立的规格(2011 年 2 ...

  8. 一次ajax调用,发送了两次请求(一次为请求方法为option,一次为正常请求)

    在项目了开发时遇见一个奇怪的现象,就是我在js里面发送一次ajax请求,在浏览器network那边查询到的却是发送了两次请求,第一次的Request Method参数为OPTIONS,第二次的Requ ...

  9. JSON toBean Timestamp To Date 时间戳转日期

    时间戳格式的时间从json转为date时 配置: import java.util.Date; import net.sf.ezmorph.object.AbstractObjectMorpher; ...

  10. java程序设计课程实验报告1

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计   班级:1353       姓名:陈都  学号:20135328 成绩:             指导 ...