BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划

更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant(zh_CN).pdf

题解

……APIO2017那天我似乎在……北京一日游……

【更新】诶?我……我Rank1了?//虽然只有不几个人做这道题


正经的题解:

二分答案,如果存在一种环路使得【总获利/总路程 > mid】,那么这个环路的【总(获利 - 路程 * mid)】一定大于0,换句话说,把边权换成【获利 - 路程 * mid】后,该图有正环。

正环可以用DFS版SPFA判,详见这篇论文——SPFA算法的优化及应用,每对点对(u, v)的获利、最短路程都可以预处理出来。

那么这道题还是很简单的啦。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 105, MAXK = 1005, INF = 0x3f3f3f3f;
int n, m, K, dis[N][N], val[N][N], buy[N][MAXK], sell[N][MAXK];
double l, r, mid, d[N];
bool done, ins[N]; void spfa(int u){
if(done) return;
ins[u] = 1;
for(int v = 1; v <= n; v++){
if(done) return;
if(v != u && dis[u][v] < INF && d[u] + val[u][v] - mid * dis[u][v] > d[v]){
d[v] = d[u] + val[u][v] - mid * dis[u][v];
if(ins[v]) return (void)(done = 1);
spfa(v);
}
}
ins[u] = 0;
}
bool check(){
done = 0;
memset(ins, 0, sizeof(ins));
memset(d, 0, sizeof(d));
for(int i = 1; i <= n && !done; i++)
spfa(i);
return done;
} int main(){ read(n), read(m), read(K);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= K; j++)
read(buy[i][j]), read(sell[i][j]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dis[i][j] = i == j ? 0 : INF;
for(int i = 1, u, v, w; i <= m; i++)
read(u), read(v), read(w), dis[u][v] = w;
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
for(int k = 1; k <= K; k++)
if(buy[i][k] != -1 && sell[j][k] != -1){
val[i][j] = max(val[i][j], sell[j][k] - buy[i][k]);
r = max(r, (double)val[i][j]);
}
int cnt = 0;
while(++cnt <= 60){
mid = (l + r) / 2;
if(check()) l = mid;
else r = mid;
}
printf("%lld\n", (ll)floor((l + r) / 2)); return 0;
}

BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划的更多相关文章

  1. [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案

    题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ...

  2. BZOJ 1715: [Usaco2006 Dec]Wormholes 虫洞 DFS版SPFA判负环

    Description John在他的农场中闲逛时发现了许多虫洞.虫洞可以看作一条十分奇特的有向边,并可以使你返回到过去的一个时刻(相对你进入虫洞之前).John的每个农场有M条小路(无向边)连接着N ...

  3. POJ 3259 Wormholes(SPFA判负环)

    题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...

  4. Poj 3259 Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...

  5. spfa判负环

    bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...

  6. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  7. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  8. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  9. LightOj 1221 - Travel Company(spfa判负环)

    1221 - Travel Company PDF (English) Statistics problem=1221" style="color:rgb(79,107,114)& ...

随机推荐

  1. SICP读书笔记 2.5

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  2. Docker--Dockerfile引用及指令集的功能用法

    Dockerfile引用的官网文档:https://docs.docker.com/engine/reference/builder/ 编写Dockerfiles的最佳实践的官网文档:https:// ...

  3. GIT问题(一)——push冲突

  4. init命令详解

    基础命令学习目录首页 1.手动输入命令会执行相关操作   #init 0 - 停机(千万不能把initdefault 设置为0 )   #init 1 - 单用户模式   #init 2 - 多用户, ...

  5. React Native (0.57)开发环境搭建(注意:Node不要随便更新到最新版,更新完后莫名其妙的问题一大堆)

    搭建开发环境 一.安装依赖 必须安装的依赖有:Node.Watchman 和 React Native 命令行工具以及 Xcode. 1.首先安装 Homebrew 2.安装 Node, Watchm ...

  6. Java面向对象程序设计

    北京电子科技学院(BESTI)                                                                                 实    ...

  7. iOS自学-监听按钮点击、提醒框

    //事件监听的问题 CGRect btn2Frame = CGRectMake(100.0, 150.0, 60.0, 44.0); //两种不同的方式创建 UIButton *btn2 = [UIB ...

  8. Java第一天——环境变量的配置与破解myeclipse2013

    一.jdk环境变量的配置 1.下载JDK并安装(官网JavaSE,64位(具体看电脑是多少位的))官网http://www.oracle.com/technetwork/java/javase/dow ...

  9. [转]让opencv输出人脸检测的得分(置信率)

    转自:http://www.cnblogs.com/sciencefans/ 作者:sciencefans 最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用opencv的人脸检测器 ...

  10. Eslint 配置及规则说明(报错)

    https://blog.csdn.net/violetjack0808/article/details/72620859 https://blog.csdn.net/hsl0530hsl/artic ...