Netty源码分析第2章(NioEventLoop)---->第7节: 处理IO事件
Netty源码分析第二章: NioEventLoop
第七节:处理IO事件
上一小节我们了解了执行select()操作的相关逻辑, 这一小节我们继续学习select()之后, 轮询到io事件的相关逻辑:
回到NioEventLoop的run()方法:
protected void run() {
for (;;) {
try {
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.SELECT:
//轮询io事件(1)
select(wakenUp.getAndSet(false));
if (wakenUp.get()) {
selector.wakeup();
}
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
//默认是50
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
processSelectedKeys();
} finally {
runAllTasks();
}
} else {
//记录下开始时间
final long ioStartTime = System.nanoTime();
try {
//处理轮询到的key(2)
processSelectedKeys();
} finally {
//计算耗时
final long ioTime = System.nanoTime() - ioStartTime;
//执行task(3)
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
//代码省略
}
}
我们首先看 if (ioRatio == 100) 这个判断, ioRatio主要是用来控制processSelectedKeys()方法执行时间和任务队列执行时间的比例, 其中ioRatio默认是50, 所以会走到下一步else
首先通过 final long ioStartTime = System.nanoTime() 记录下开始时间, 再通过processSelectedKeys()方法处理轮询到的key
我们跟到processSelectedKeys()方法中:
private void processSelectedKeys() {
if (selectedKeys != null) {
//flip()方法会直接返回key的数组
processSelectedKeysOptimized(selectedKeys.flip());
} else {
processSelectedKeysPlain(selector.selectedKeys());
}
}
我们知道selector通过netty优化之后, 会初始化 selectedKeys这个属性, 所以这个属性不为空就会走到 processSelectedKeysOptimized(selectedKeys.flip()) 方法, 这个方法就是对应优化过的selector进行操作的
如果是非优化的selector, 则会进入 processSelectedKeysPlain(selector.selectedKeys()) 方法
selectedKeys.flip()为selectedKey中绑定的数组, 我们之前小节讲过selectedKeys其实是通过数组存储的, 所以经过select()操作如果监听到事件selectedKeys的数组就会有值
跟进到processSelectedKeysOptimized(selectedKeys.flip())方法中:
private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
//通过for循环遍历数组
for (int i = 0;; i ++) {
//拿到当前的selectionKey
final SelectionKey k = selectedKeys[i];
if (k == null) {
break;
}
//将当前引用设置为null
selectedKeys[i] = null;
//获取channel(NioSeverSocketChannel)
final Object a = k.attachment();
//如果是AbstractNioChannel, 则调用processSelectedKey()方法处理io事件
if (a instanceof AbstractNioChannel) {
processSelectedKey(k, (AbstractNioChannel) a);
} else {
@SuppressWarnings("unchecked")
NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
processSelectedKey(k, task);
} //代码省略
}
}
首先通过for循环遍历数组中的每一个key, 获得key之后首先将数组中对应的下标清空, 因为selector不会自动清空, 这与我们使用原生selector时候, 通过遍历selector.selectedKeys()的set的时候, 拿到key之后要执行remove()是一个意思
之后获取注册在key上的channel, 判断channel是不是AbstractNioChannel, 通常情况都是AbstractNioChannel, 所以这里会执行 processSelectedKey(k, (AbstractNioChannel) a)
跟到processSelectedKey(k, (AbstractNioChannel) a)方法中:
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
//获取到channel中的unsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
//如果这个key不是合法的, 说明这个channel可能有问题
if (!k.isValid()) {
//代码省略
}
try {
//如果是合法的, 拿到key的io事件
int readyOps = k.readyOps();
//链接事件
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
//写事件
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
ch.unsafe().forceFlush();
}
//读事件和接受链接事件
//如果当前NioEventLoop是work线程的话, 这里就是op_read事件
//如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
return;
}
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}
我们首先获取和channel绑定的unsafe, 之后拿到channel注册的事件
我们关注 if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) 这个判断, 这个判断相信注释上写的很明白, 如果当前NioEventLoop是work线程的话, 这里就是op_read事件, 如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
然后会通过channel绑定的unsafe对象执行read()方法用于处理链接或者读写事件
以上就是NioEventLoop对io事件的处理过程, 有关read()方法执行逻辑, 会在以后的章节中详细剖析
Netty源码分析第2章(NioEventLoop)---->第7节: 处理IO事件的更多相关文章
- Netty源码分析第4章(pipeline)---->第4节: 传播inbound事件
Netty源码分析第四章: pipeline 第四节: 传播inbound事件 有关于inbound事件, 在概述中做过简单的介绍, 就是以自己为基准, 流向自己的事件, 比如最常见的channelR ...
- Netty源码分析第4章(pipeline)---->第5节: 传播outbound事件
Netty源码分析第五章: pipeline 第五节: 传播outBound事件 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 在我们业务代码中, 有可 ...
- Netty源码分析第4章(pipeline)---->第6节: 传播异常事件
Netty源码分析第四章: pipeline 第6节: 传播异常事件 讲完了inbound事件和outbound事件的传输流程, 这一小节剖析异常事件的传输流程 首先我们看一个最最简单的异常处理的场景 ...
- Netty源码分析第2章(NioEventLoop)---->第1节: NioEventLoopGroup之创建线程执行器
Netty源码分析第二章: NioEventLoop 概述: 通过上一章的学习, 我们了解了Server启动的大致流程, 有很多组件与模块并没有细讲, 从这个章开始, 我们开始详细剖析netty的各个 ...
- Netty源码分析第2章(NioEventLoop)---->第2节: NioEventLoopGroup之NioEventLoop的创建
Netty源码分析第二章: NioEventLoop 第二节: NioEventLoopGroup之NioEventLoop的创建 回到上一小节的MultithreadEventExecutorG ...
- Netty源码分析第2章(NioEventLoop)---->第3节: 初始化线程选择器
Netty源码分析第二章:NioEventLoop 第三节:初始化线程选择器 回到上一小节的MultithreadEventExecutorGroup类的构造方法: protected Multi ...
- Netty源码分析第2章(NioEventLoop)---->第4节: NioEventLoop线程的启动
Netty源码分析第二章: NioEventLoop 第四节: NioEventLoop线程的启动 之前的小节我们学习了NioEventLoop的创建以及线程分配器的初始化, 那么NioEvent ...
- Netty源码分析第2章(NioEventLoop)---->第5节: 优化selector
Netty源码分析第二章: NioEventLoop 第五节: 优化selector 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEv ...
- Netty源码分析第2章(NioEventLoop)---->第6节: 执行select操作
Netty源码分析第二章: NioEventLoop 第六节: 执行select操作 分析完了selector的创建和优化的过程, 这一小节分析select相关操作 跟到跟到select操作的入口 ...
随机推荐
- Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树
好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...
- kukubeadm 1.6.1 + docker1.2.6 安装问题
kubeadm init --apiserver-advertise-address=192.168.20.229 --pod-network-cidr=10.244.0.0/16 kubelet: ...
- virtualbox+vagrant学习-2(command cli)-20-vagrant suspend命令
Suspend 格式: vagrant suspend [options] [name|id] 这个suspend命令将挂起vagrant正在管理的客户机,而不是完全关闭或摧毁它. 挂起有效地保存了计 ...
- virtualbox+vagrant学习-4-Vagrantfile-6-SSH Settings
SSH Settings 配置命名空间:config.ssh config.ssh的设置涉及到将如何配置vagrant使其通过ssh访问你的计算机.与大多数vagrant设置一样,默认设置通常都很好, ...
- vux UI 项目国际化
第一步必须装 vux vux-loader vuex 和vuex-i18n npm i vux-loader -D npm i vuex vux vuex-i18n -S 安装完成需要配置webpac ...
- c++——静态成员变量成员函数
静态成员变量成员函数 思考:每个变量,拥有属性.有没有一些属性,归所有对象拥有? 4.1静态成员变量 1)定义静态成员变量 关键字 static 可以用于说明一个类的成员, 静态成员提供了一个同类对象 ...
- smtp发送html报告与日志附件图片png
1.非ssl发送: 授权码机制,开启smtp,获取授权码以qq邮箱为例: 附件展示: #!/usr/bin/python3 import os import smtplib from email.mi ...
- Python学习笔记系列——函数
今年下半年的计划主要是Python和Mysql了,公司不方便看书和视频,就照着廖雪峰的Python网站开始看了.以下纯为个人笔记记录,若是想系统学习的小伙伴还是看这里的好一些,毕竟系统.https:/ ...
- POJ 1321 棋盘问题(非常经典的dfs,入门题)
棋盘问题 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 66277 Accepted: 31639 Descriptio ...
- POJ 1080( LCS变形)
题目链接: http://poj.org/problem?id=1080 Human Gene Functions Time Limit: 1000MS Memory Limit: 10000K ...