Fence Rails
Burch, Kolstad, and Schrijvers

Farmer John is trying to erect a fence around part of his field. He has decided on the shape of the fence and has even already installed the posts, but he's having a problem with the rails. The local lumber store has dropped off boards of varying lengths; Farmer John must create as many of the rails he needs from the supplied boards.

Of course, Farmer John can cut the boards, so a 9 foot board can be cut into a 5 foot rail and a 4 foot rail (or three 3 foot rails, etc.). Farmer John has an `ideal saw', so ignore the `kerf' (distance lost during sawing); presume that perfect cuts can be made.

The lengths required for the rails might or might not include duplicates (e.g., a three foot rail and also another three foot rail might both be required). There is no need to manufacture more rails (or more of any kind of rail) than called for the list of required rails.

PROGRAM NAME: fence8

INPUT FORMAT

Line 1: N (1 <= N <= 50), the number of boards
Line 2..N+1: N lines, each containing a single integer that represents the length of one supplied board
Line N+2: R (1 <= R <= 1023), the number of rails
Line N+3..N+R+1: R lines, each containing a single integer (1 <= ri <= 128) that represents the length of a single required fence rail

SAMPLE INPUT (file fence8.in)

4
30
40
50
25
10
15
16
17
18
19
20
21
25
24
30

OUTPUT FORMAT

A single integer on a line that is the total number of fence rails that can be cut from the supplied boards. Of course, it might not be possible to cut all the possible rails from the given boards.

SAMPLE OUTPUT (file fence8.out)

7

HINTS (use them carefully!)

HINT 1

This is a high dimensionality multiple knapsack problem, so we just have to test the cases. Given that the search space has a high out-degree, we will use depth first search with iterative deepening in order to limit the depth of the tree. However, straight DFSID will be too slow, so some tree-pruning is necessary.

————————————————————题解

题解给了四个优化

1、某两个要砍出的木板同长,我们就总在木料的非降序中砍它们

2、有两个木料是同长的,我们总是去砍第一个

3、一个木板和木料同长,那么一定要这么砍【这个优化很迷,没有加上】

4、如果一个木料砍完后的长度小于最小的木板长,这个木料的剩余部分直接丢掉

还有个优化是二分答案求最优解,所有点0.000

一开始写的是针对每个背包往里面塞东西……应该是针对每个木板去看能不能割出来

USACO总能让人关注到一些基础算法中你啥也不会的东西……这是最有趣的……也是最痛苦的……因为发现最后真是啥也不会……

 /*
ID: ivorysi
LANG: C++
PROG: fence8
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <algorithm>
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
#define inf 0x5f5f5f5f
#define ivorysi
#define mo 97797977
#define hash 974711
#define base 47
#define fi first
#define se second
#define pii pair<int,int>
#define esp 1e-8
typedef long long ll;
using namespace std;
int n,r;
int bag[],sp;
int wood[],sum[],mid,now;
bool used[];
void init() {
scanf("%d",&n);
siji(i,,n) {
scanf("%d",&bag[i]);
sp+=bag[i];
}
sort(bag+,bag+n+);
scanf("%d",&r);
siji(i,,r) {
scanf("%d",&wood[i]);
}
sort(wood+,wood+r+);
siji(i,,r) {
sum[i]=sum[i-]+wood[i];
}
}
bool dfs(int k,int pred) {
if(k<=) return ;
if(sp<sum[k]) return ;
sp-=wood[k];
for(int i= k<mid&&wood[k]==wood[k+] ?pred: ;i<=n;++i) {
//有两个相同长度的木板需要切,让它们以一种非降序的顺序切出来
if(bag[i]==bag[i-]) continue;//这个木料和前一个一样,那么切之后会搜出来一个一模一样的结果
if(bag[i]>=wood[k]) {
bag[i]-=wood[k];
if(bag[i]<wood[]) sp-=bag[i];//这个木料不能切除任何一块木板了
if(dfs(k-,i)) {
if(bag[i]<wood[]) sp+=bag[i];
sp+=wood[k];
bag[i]+=wood[k];
return ;
}
if(bag[i]<wood[]) sp+=bag[i];
bag[i]+=wood[k];
}
}
sp+=wood[k];
return ;
}
int binary() {
int left=,right=r;
while(left<right) {
mid=(left+right+)>>;
if(sum[mid]>sp || wood[mid]>bag[n]) {right=mid-;continue;}
if(dfs(mid,)) left=mid;
else right=mid-;
}
return left;
}
void solve() {
init();
printf("%d\n",binary());
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("fence8.in","r",stdin);
freopen("fence8.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
return ;
}

USACO 6.3 Fence Rails(一道纯剪枝应用)的更多相关文章

  1. USACO 4.1 Fence Rails

    Fence RailsBurch, Kolstad, and Schrijvers Farmer John is trying to erect a fence around part of his ...

  2. usaco training 4.1.2 Fence Rails 题解

    Fence Rails题解 Burch, Kolstad, and Schrijvers Farmer John is trying to erect a fence around part of h ...

  3. poj2823一道纯单调队列

    Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 32099   Accepted: 9526 ...

  4. USACO 3.3 fence 欧拉回路

    题意:求给定图的欧拉回路(每条边只走一次) 若欧拉回路存在,图中只可能有0个or2个奇数度的点. 求解时,若有奇数度的点,则必须从该点开始.否则可以从任一点开始 求解过程:dfs //主程序部分 # ...

  5. USACO 4.1 Fence Loops(Floyd求最小环)

    Fence Loops The fences that surround Farmer Brown's collection of pastures have gotten out of contro ...

  6. USACO 4.1 Fence Loops

    Fence Loops The fences that surround Farmer Brown's collection of pastures have gotten out of contro ...

  7. USACO 6.3 章节 你对搜索和剪枝一无所知QAQ

    emmm........很久很久以前 把6.2过了 所以emmmmmm 直接跳过 ,从6.1到6.3吧 Fence Rails 题目大意 N<=50个数A1,A2... 1023个数,每个数数值 ...

  8. hdu 4277 USACO ORZ(dfs+剪枝)

    Problem Description Like everyone, cows enjoy variety. Their current fancy is new shapes for pasture ...

  9. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

随机推荐

  1. jvm内存模型(运行时数据区)

    运行时数据区(runtime data area) jvm定义了几个运行时数据区,这些运行时数据区存储的数据,供开发者的应用或者jvm本身使用.按线程共享与否可以分为线程间共享和线程间独立. 线程间独 ...

  2. Django 2.0.1 官方文档翻译:接下来读什么(page 14)

    接下来读什么(page 14) 现在你应该已经阅读了所有的(page1-13 )介绍材料,决定继续使用Django.我们仅仅做了简要的介绍(事实上,如果你阅读了前面所有的内容,也只是全部文档的5%.) ...

  3. python学习笔记2--list

    一.list操作 list=['xiaohei','xiaobai','xiaohong']#定义一个数组 name=[]#定义一个空数组 #查 #下标是从0开始 print(list[1]) #-1 ...

  4. 经典Dialog插件Layer

    Github上只有一个test,所以最好还是到官网去学习,官网的示例写的很详尽,难得一见的设计思路和灵活性都极好的插件.下面是我自己test过的demo <!DOCTYPE html> & ...

  5. UC手机浏览器(U3内核)相关文档整理

    Note:绝大多数API在IOS版下不支持,使用前请自行测试. UC官方的开发者中心:http://www.uc.cn/business/developer.shtml U3内核定制<meta& ...

  6. 矩阵 matrix

    传送门 注意这题时限是2s [问题描述] 有一个n × m的矩阵,你从左上角走到右下角,只能向下和向右走. 每个点上有一个重量v i,j 价值w i,j 的物品,你有一个容量为S的背包,经过一个点你可 ...

  7. Python Dict用法

    Operation Result len(a) the number of items in a 得到字典中元素的个数 a[k] the item of a with key k 取得键K所对应的值 ...

  8. MongoDB 查询整理

    查询所有sql:  select * from table_namemongodb:   db.getCollection('期刊论文').find({}) 如上图所示,获取期刊论文collectio ...

  9. MVC中检测到有潜在危险的 Request.Form 值

    在做mvc项目时,当使用xhedit or.ueditor编辑器时,点击提交时,编辑器中的内容会带有html标签提交给服务器,这时就是会报错,出现如下内容: “/”应用程序中的服务器错误. 从客户端( ...

  10. jenkins 入门教程(上)【转】

    转自:https://www.cnblogs.com/yjmyzz/p/jenkins-tutorial-part-1.html jenkins是一个广泛用于持续构建的可视化web工具,持续构建说得更 ...