题解

感觉全世界都写过只有我没写过

毕竟是板子还是挺简单的,只要用可持久化线段树维护一下数组的形态就好了,每个数组里面维护这个数组的father,和这个点所在树的最长链的深度(如果这个点是根按秩合并要用)

为了避免返回两个值可以直接返回所在线段树节点的编号

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
} int N,M;
struct node {
int f,dep,lc,rc;
}tr[MAXN * 80];
int rt[MAXN],Ncnt;
void build(int &u,int l,int r) {
u = ++Ncnt;
if(l == r) {
tr[u].f = l;
tr[u].dep = 1;
return;
}
int mid = (l + r) >> 1;
build(tr[u].lc,l,mid);
build(tr[u].rc,mid + 1,r);
}
int Query(int u,int L,int R,int pos) {
if(L == R) return u;
int mid = (L + R) >> 1;
if(pos <= mid) return Query(tr[u].lc,L,mid,pos);
else return Query(tr[u].rc,mid + 1,R,pos);
}
void Change(int x,int &y,int L,int R,int pos,int v) {
y = ++Ncnt;
tr[y] = tr[x];
if(L == R) {tr[y].f = v;return;}
int mid = (L + R) >> 1;
if(pos <= mid) Change(tr[x].lc,tr[y].lc,L,mid,pos,v);
else Change(tr[x].rc,tr[y].rc,mid + 1,R,pos,v);
}
void Inc_dep(int x,int &y,int L,int R,int pos) {
y = ++Ncnt;
tr[y] = tr[x];
if(L == R) {tr[y].dep++;return;}
int mid = (L + R) >> 1;
if(pos <= mid) Inc_dep(tr[x].lc,tr[y].lc,L,mid,pos);
else Inc_dep(tr[x].rc,tr[y].rc,mid + 1,R,pos);
}
int getfa(int u,int x) {
int p = Query(u,1,N,x);
if(tr[p].f == x) return p;
else return getfa(u,tr[p].f);
}
void Solve() {
read(N);read(M);
build(rt[0],1,N);
int op,a,b;
for(int i = 1 ; i <= M ; ++i) {
read(op);
if(op == 1) {
rt[i] = rt[i - 1];
read(a);read(b);
a = getfa(rt[i],a);b = getfa(rt[i],b);
if(a == b) continue;
if(tr[a].dep < tr[b].dep) Change(rt[i],rt[i],1,N,tr[a].f,tr[b].f);
else if(tr[b].dep < tr[a].dep) Change(rt[i],rt[i],1,N,tr[b].f,tr[a].f);
else {
Change(rt[i],rt[i],1,N,tr[a].f,tr[b].f);
Inc_dep(rt[i],rt[i],1,N,tr[b].f);
}
}
else if(op == 2) {
read(a);
rt[i] = rt[a];
}
else if(op == 3) {
rt[i] = rt[i - 1];
read(a);read(b);
a = getfa(rt[i],a);b = getfa(rt[i],b);
if(a == b) {puts("1");}
else puts("0");
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【BZOJ】3674: 可持久化并查集加强版的更多相关文章

  1. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  2. BZOJ 3674 可持久化并查集加强版(按秩合并版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  3. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  4. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

  5. BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树

    既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...

  6. bzoj 3674 可持久化并查集加强版——可持久化并查集

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3674 用主席树维护 fa[ ]  和 siz[ ] .改 fa[ ] 和改 siz[ ] 都 ...

  7. BZOJ 3674: 可持久化并查集加强版

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3674 题意:三种操作:(1)合并ab所在集合:(2)查询ab是否在一个集合:(3) ...

  8. BZOJ 3674 可持久化并查集加强版 可持久化并查集

    题目大意:同3673 强制在线 同3673 仅仅只是慢了一些0.0 这道题仅仅写路径压缩比仅仅写启示式合并要快一点点 两个都写就慢的要死0.0 改代码RE的可能是内存不够 #include<cs ...

  9. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  10. bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)

    CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...

随机推荐

  1. Java基础-线程操作共享数据的安全问题

    Java基础-线程操作共享数据的安全问题 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.引发线程安全问题 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运 ...

  2. vue 打印页面部分区域

    1. vue项目打印页面部分区域 2. 原生js实现页面局部打印功能 3. vue项目中将table组件导出Excel表格以及打印页面内容

  3. 视差插件parallarx

    github上的demo,自己拿来改了改. <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...

  4. scrapy爬取天气数据

    看了scrapy,打算构建自己的天气数据,目标源:就是你了,中国天气网! 仔细点两下这个网站,发现可以由各个省.直辖市到省市所属的地级市,再到各县,页面在这: 点开就可以看到中国所有的省.直辖市,但港 ...

  5. [转载]strtok函数和strtok_r函数

    1.一个应用实例 网络上一个比较经典的例子是将字符串切分,存入结构体中.如,现有结构体 typedef struct person{     char name[25];     char sex[1 ...

  6. C#(.net)水印图片的生成

    /* * *    使用说明: * 建议先定义一个WaterImage实例 * 然后利用实例的属性,去匹配需要进行操作的参数 * 然后定义一个WaterImageManage实例 * 利用WaterI ...

  7. Cloudera Manager Admin控制台启动不起来

    这几天都在搞大数据这一块,由于以前自己在弄hadoop等安装的时候特别的费劲,于是乎找到了广大程序员的福音——cloudera manager,但是第一步安装好了以后无法启动,再三思考+百度发现: 通 ...

  8. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  9. mysql使用模板解决旧数据处理,默认初始化数据的通用方法!

    一 业务介绍 先来看看我这得大致业务需求,这次业务比较简单: 即从现在开始,每次new一个爷爷都需要默认初始化给这个爷爷三个儿子(子表,爷爷id去关联),并在初始化每个儿子的同时再给每个儿子初始化若干 ...

  10. Android Bander设计与实现 - 设计

    Binder Android IPC Linux 内核 驱动 摘要 Binder是Android系统进程间通信(IPC)方式之一.Linux已经拥有管道,system V IPC,socket等IPC ...