题目链接:

http://poj.org/problem?id=3356

AGTC
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13855   Accepted: 5263

Description

Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C

| | | | | | |

A G T * C * T G A C G C

Deletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C

| | | | | | |

A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4

Source

分析:
两个序列中最长的序列长度减去LCS的长度
代码如下:
#include<cstring>
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
#define max_v 1005
using namespace std;
char x[max_v],y[max_v];
int dp[max_v][max_v];
int l1,l2;
int main()
{
while(~scanf("%d %s",&l1,x))
{
scanf("%d %s",&l2,y);
memset(dp,,sizeof(dp));
for(int i=; i<=l1; i++)
{
for(int j=; j<=l2; j++)
{
if(x[i-]==y[j-])
{
dp[i][j]=dp[i-][j-]+;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
}
int t=l1;
if(l2>l1)
t=l2;
printf("%d\n",t-dp[l1][l2]);
}
return ;
}

POJ 3356 水LCS的更多相关文章

  1. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  2. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

  3. POJ 2250 Compromise(LCS)

    POJ 2250 Compromise(LCS)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#proble ...

  4. Poj 3356 ACGT(LCS 或 带备忘的递归)

    题意:把一个字符串通过增.删.改三种操作变成另外一个字符串,求最少的操作数. 分析: 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除. 分析可知两个字符串的距离肯定 ...

  5. POJ 3356 AGTC(DP-最小编辑距离)

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  6. POJ 3356.AGTC

    问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...

  7. poj 3356 AGTC(线性dp)

    题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...

  8. POJ 2250 (LCS,经典输出LCS序列 dfs)

    题目链接: http://poj.org/problem?id=2250 Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  9. POJ 1080( LCS变形)

    题目链接: http://poj.org/problem?id=1080 Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K ...

随机推荐

  1. 阿里云 CentOS7安装redis4.0.9并开启远程访问

    1 安装redis编译的c环境 yum install gcc-c++ redis是c语言开发的,安装redis需要先将官网下载的源码进行编译,编译依赖gcc环境. 如果没有gcc环境,需要安装gcc ...

  2. 【java错误】System.out.println()出错

    今天想测试java的System的类,没想到居然出错了.在同一个包下的java文件System全错,而其他包中的System没错.上网查了下资料,原来我是重定义了System类,覆盖了原来的Syste ...

  3. mvc里全局错误日志

    第一步在项目中找到App_Start文件夹下建立一个错误日志过滤器. 第二步在Global.asax文件中注册下日志过滤器 第三步: 继承一个ExceptionFilterAtrribute 第四步: ...

  4. 多线程下载英文Google地图

    1. pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&quo ...

  5. WPF ListView ListBox 常用的样式记录

    ListView: <ListView x:Name="lvBlockedApps" ItemsSource="{Binding BlockedAppsCollec ...

  6. Android TextEdit属性

    EditText继承关系:View-->TextView-->EditText 去掉边框 将EditText属性设置修改 android:background="@null&qu ...

  7. linux rpm之已安装包校验、rpm包中文件提取

    已安装包校验 rpm -V 已安装的包名-V 校验指定rpm包中的文件 rpm -V pth没有任何提示,说明自安装后没有做过任何修改 rpm包中文件提取 比如对一个系统配置文件误操作,可以根据这个文 ...

  8. java boolean 值在内存中占几位?

      java boolean 值在内存中占几位?    <Java虚拟机规范>中这样描述:虽然定义了boolean这种数据类型,但是只对它提供了非常有限的支持.在Java虚拟机中没有任何供 ...

  9. 浅谈 java 反射机制

    一:Java反射概念 Java反射是Java被视为动态(或准动态)语言的一个关键性质.这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其mod ...

  10. Django 自定义分页

    1.路由 urls.py url(r'^index2.html/', views.index2), 2.views.py def index2(request): # 数据总条数 当前页 每页显示条数 ...