转自:http://www.cnblogs.com/sciencefans/

作者:sciencefans

最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用opencv的人脸检测器检测到的错误脸作为这样的负样本。

但是国内(包括国外)居然几乎没有相关的资料如何输出detectMultiScale()的置信率或者说是人脸得分

所以写一篇小小的总结供有相关需求的人参考。

转载需注明:http://www.cnblogs.com/sciencefans/

看了下人脸识别函数的opencv的源码

\sources\modules\objdetect\src\cascadedetect.cpp

中detectMultiScale有两个重载,第二个重载在opencv的开发文档里居然只字未提:

void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )

发现他有个rejectLevels和levelWeight这两个引用参数,看名字感觉是一种得分输出。

google了一下发现国外问的人不少但是基本没啥解释(或者是我没认真找?)

然后看了下它调用的cvHaarDetectObjectsForROC()的源码实现,大概懂了这俩vectors是在干什么的。

先上结论:确实和人脸得分有关。

首先应该明白一点detectMultiScale()这个方法是一个级联分类器,使用了boosting的方法。所以输入图像要经过层层(级级)选拔,留到最后的才是真汉子(正样本)

rejectLevels就是代表在第几层被out的。如果是最后一层(在lbpcascade_frontalface.xml中是20,具体要看xml中的叙述)被out,则说明很可能是正样本。

为啥说很可能呢?

因为还有个参数:levelWeight。即使是在最后一层被out的,levelWeight很小甚至是负数,也可以看成是负样本。

实际上很多负样本正是在最后一层被out的。

见下图:

我这里只截取了level在20才out的框。输出了他们的levelWeight。是脸的地方最大是4.23多,其他的就很小。不用过多解释了吧~

所以这个函数的原理是这样的(个人理解,有错误请指教):

首先一个level一个level地测试样本,然后每一个level给一个对应的得分,也就是levelWeight,如果这个weight低于或者高于对应level的threshold,则被抛弃。

坚持到最后一个level并且在最后一个level仍然满足threshold的框就是正确的脸(正样本)。

所以,人脸的分应该是这样:level越大,分数越高,在相同的level,levelWeight越大分数越高。

但是实际上真正的人脸都是能坚持到level20(最后一个level)的,所以只比对最后一个level的所有大于1的框的levelWeight进行比对就可以知道脸的得分啦~

这里给出所有level被gg的框的图:

最后给出灰常短小精悍的demo的源代码:

 1 #include <opencv2\opencv.hpp>
2 #include <iostream>
3 #include <vector>
4 #include <fstream>
5 #include <math.h>
6 using namespace std;
7 using namespace cv;
8 const string xmlpath = "lbpcascade_frontalface.xml";
9 CascadeClassifier face_cc;
10
11 int tic = 0;
12
13 void detect(Mat img){
14 vector<Rect> faces;
15 vector<int> rejLevel;
16 vector<double> levelW;
17 Mat grayimg;
18 cvtColor(img, grayimg, CV_RGB2GRAY);
19 equalizeHist(grayimg, grayimg);
20 int minl = min(img.rows, img.cols);
21 face_cc.detectMultiScale(grayimg, faces, rejLevel, levelW, 1.1, 3, 0, Size(), Size(), true);
22 //face_cc.detectMultiScale(grayimg, faces, 1.1);
23 for ( int i = 0; i < faces.size(); i++ )
24 {
25 if ( rejLevel[i] < 00 )
26 {
27 continue;
28 }
29 stringstream text1, text2;
30 text1 << "rejLevel:" << rejLevel[ i ];
31 text2 << "levelW:" << levelW[ i ];
32 string ttt = text1.str();
33 rectangle(img, faces[ i ], Scalar(255, 255, 0), 2, 8, 0);
34 putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y - 3), 1, 1, Scalar(0,255,255));
35 ttt = text2.str();
36 putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y + 12), 1, 1, Scalar(255, 0, 255));
37 }
38 imshow("IMG", img);
39 waitKey(0);
40 }
41
42 int main(){
43 if ( !face_cc.load(xmlpath) )
44 {
45 cout << "load error!\n";
46 return -1;
47 }
48 ifstream pathin;
49 pathin.open("imgpath.txt");
50 string t;
51 while ( pathin >> t && tic < 10000)
52 {
53 Mat img = imread(t);
54 detect(img);
55 }
56 pathin.close();
57 return 0;
58 }

[转]让opencv输出人脸检测的得分(置信率)的更多相关文章

  1. 让opencv输出人脸检测的得分(置信率)

    最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用opencv的人脸检测器检测到的错误脸作为这样的负样本. 但是国内(包括国外)居然几乎没有相关的资料如何输出detectMultiS ...

  2. 【转载】opencv实现人脸检测

    全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article ...

  3. OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现

    # OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现 [-= 博客目录 =-] 1-学习目标 1.1-本章介绍 1.2-实践内容 1.3-相关说明 2-学习过程 2.1-环 ...

  4. OpenCV实现人脸检测

    OpenCV实现人脸检测(转载)  原文链接:https://www.cnblogs.com/mengdd/archive/2012/08/01/2619043.html 本文介绍最基本的用OpenC ...

  5. OpenCV + Python 人脸检测

    必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候 ...

  6. python中使用Opencv进行人脸检测

    这两天学习了人脸识别,看了学长写的代码,边看边码边理解搞完了一边,再又是自己靠着理解和记忆硬码了一边,感觉还是很生疏,就只能来写个随笔加深一下印象了. 关于人脸识别,首先需要了解的是级联分类器Casc ...

  7. opencv 摄像头人脸检测

    PYTHON ubuntu16.04 默认安装的Python版本2.7.12,当用pip install opencv-python 安装了opencv for python 3.3.0.10后,运行 ...

  8. opencv 实现人脸检测(harr特征)

    我这里用的是已经训练好的haar级联分类器. 眼睛检测 haarcascade_eye_tree_eyeglasses.xml 人脸检测 haarcascade_frontalface_alt2.xm ...

  9. 利用html5、websocket和opencv实现人脸检测

    最近学习人脸识别相关的东西,在MFC下使用OpenCV做了一个简单的应用.训练需要较多的数据,windows应用程序终究还是不方便,于是想着做成CS模式:检测识别都放在服务器端,视频获取和显示都放在网 ...

随机推荐

  1. 2017-2018-2 《网络对抗技术》 20155322 Exp 5 MSF基础应用

    [-= 博客目录 =-] 1-实践目标 1.1-实践介绍 1.2-实践内容 1.3-实践要求 2-实践过程 2.1-情报收集 2.2-主动攻击实践-ms08_067 2.3-浏览器攻击实践-many* ...

  2. Android开发——代码中实现WAP方式联网

    ,移动和联通的WAP代理服务器都是10.0.0.172,电信的WAP代理服务器是10.0.0.200. 在Android系统中,对于获取手机的APN设置,需要通过ContentProvider来进行数 ...

  3. c++ 方框中绘制菜单代码

    绘制静态菜单 getch与getchar 接收光标控制 一.绘制静态菜单 编写函数void mainmenu( void) 二.getch与getchar getch()的作用是从键盘接收一个字 ...

  4. 【BZOJ1044】[HAOI2008]木棍分割

    [BZOJ1044][HAOI2008]木棍分割 题面 bzoj 洛谷 题解 第一问显然可以二分出来的. 第二问: 设\(dp[i][j]\)表示前\(i\)个,切了\(j\)组的方案数 发现每次转移 ...

  5. 【Maven】在pom.xml文件中使用resources插件的小作用

    在spring boot创建web项目打包为jar包的过程中,是不会把webapp目录下的页面也打包进去的,这个时候接触到了maven的 resources插件. ================== ...

  6. python中偏函数的应用

    一.什么是偏函数? (1)在Python的functools模块众多的功能中,其中有一个就是偏函数,我们称之为 partial function 模块的概念我们下一篇在细讲. (2)我们都听过偏将军吧 ...

  7. jvm系列 (一) ---jvm内存区域与溢出

    jvm内存区域与溢出 目录 jvm系列(一):jvm内存区域与溢出 jvm系列(二):垃圾收集器与内存分配策略 为什么学习jvm 木板原理,最短的一块板决定一个水的深度,当一个系统垃圾收集成为瓶颈的时 ...

  8. jenkins 自动上传代码到nexus 私库

    1.jenkins 项目配置上传 2.jenkins 访问私库下载配置 -X clean install 3.maven 配置文件 /usr/local/maven/conf/settings.xml ...

  9. jenkins+Gitlab持续集成环境配置教程

    环境简介: Jenkins 2.156(本地win10) GitLab Enterprise Edition 10.1.4-ee (远程服务器) Apache Ant 1.9.13 (本地win10) ...

  10. 利用shell连接服务器

    #应用 连接timesten 数据库 host = Linux(ip, 'user', 'pwd') # 传入Ip,用户名,密码host.connect() #主机开启cdsql = host.sen ...