wordcloud+jieba
Wordcloud各参数含义
font_path : string #字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'
width : int (default=400) #输出的画布宽度,默认为400像素
height : int (default=200) #输出的画布高度,默认为200像素
prefer_horizontal : float (default=0.90) #词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )
mask : nd-array or None (default=None) #如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。
scale : float (default=1) #按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍
min_font_size : int (default=4) #显示的最小的字体大小
font_step : int (default=1) #字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差
max_words : number (default=200) #要显示的词的最大个数
stopwords : set of strings or None #设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS
background_color : color value (default=”black”) #背景颜色,如background_color='white',背景颜色为白色
max_font_size : int or None (default=None) #显示的最大的字体大小
mode : string (default=”RGB”) #当参数为“RGBA”并且background_color不为空时,背景为透明
relative_scaling : float (default=.5) #词频和字体大小的关联性
color_func : callable, default=None #生成新颜色的函数,如果为空,则使用 self.color_func
regexp : string or None (optional) #使用正则表达式分隔输入的文本
collocations : bool, default=True #是否包括两个词的搭配
colormap : string or matplotlib colormap, default=”viridis” #给每个单词随机分配颜色,若指定color_func,则忽略该方法
random_state : int or None #为每个单词返回一个PIL颜色
fit_words(frequencies) #根据词频生成词云
generate(text) #根据文本生成词云
generate_from_frequencies(frequencies[, ...]) #根据词频生成词云
generate_from_text(text) #根据文本生成词云
process_text(text) #将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) )
recolor([random_state, color_func, colormap]) #对现有输出重新着色。重新上色会比重新生成整个词云快很多
to_array() #转化为 numpy array
to_file(filename) #输出到文件
Python(wordcloud+jieba)生成中文词云图
# coding: utf-8
import jieba
from scipy.misc import imread # 这是一个处理图像的函数
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt back_color = imread('o_002.jpg') # 解析该图片 wc = WordCloud(background_color='white', # 背景颜色
max_words=1000, # 最大词数
mask=back_color, # 以该参数值作图绘制词云,这个参数不为空时,width和height会被忽略
max_font_size=100, # 显示字体的最大值
stopwords=STOPWORDS.add('苟利国'), # 使用内置的屏蔽词,再添加'苟利国'
font_path="C:/Windows/Fonts/STFANGSO.ttf", # 解决显示口字型乱码问题,可进入C:/Windows/Fonts/目录更换字体
random_state=42, # 为每个词返回一个PIL颜色
# width=1000, # 图片的宽
# height=860 #图片的长
)
# WordCloud各含义参数请点击 wordcloud参数 # 添加自己的词库分词,比如添加'金三胖'到jieba词库后,当你处理的文本中含有金三胖这个词,
# 就会直接将'金三胖'当作一个词,而不会得到'金三'或'三胖'这样的词
jieba.add_word('金三胖') # 打开词源的文本文件
text = open('cnword.txt').read() # 该函数的作用就是把屏蔽词去掉,使用这个函数就不用在WordCloud参数中添加stopwords参数了
# 把你需要屏蔽的词全部放入一个stopwords文本文件里即可
def stop_words(texts):
words_list = []
word_generator = jieba.cut(texts, cut_all=False) # 返回的是一个迭代器
with open('stopwords.txt') as f:
str_text = f.read()
unicode_text = unicode(str_text, 'utf-8') # 把str格式转成unicode格式
f.close() # stopwords文本中词的格式是'一词一行'
for word in word_generator:
if word.strip() not in unicode_text:
words_list.append(word)
return ' '.join(words_list) # 注意是空格 text = stop_words(text) wc.generate(text)
# 基于彩色图像生成相应彩色
image_colors = ImageColorGenerator(back_color)
# 显示图片
plt.imshow(wc)
# 关闭坐标轴
plt.axis('off')
# 绘制词云
plt.figure()
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis('off')
# 保存图片
wc.to_file('19th.png')
cnword.txt文本中的是十九大习大大讲话内容
stopwords.txt文本中有以下这几个词
社会主义
制度
国家
政治
背景颜色图

生成的词云图,与颜色图对应不是很明显,想明显的话可以使用一些色差大的图

wordcloud+jieba的更多相关文章
- 超详细:Python(wordcloud+jieba)生成中文词云图
# coding: utf-8 import jieba from scipy.misc import imread # 这是一个处理图像的函数 from wordcloud import WordC ...
- python 基于 wordcloud + jieba + matplotlib 生成词云
词云 词云是啥?词云突出一个数据可视化,酷炫.以前以为很复杂,不想python已经有成熟的工具来做词云.而我们要做的就是准备关键词数据,挑一款字体,挑一张模板图片,非常非常无脑.准备好了吗,快跟我一起 ...
- wordcloud + jieba 生成词云
利用jieba库和wordcloud生成中文词云. jieba库:中文分词第三方库 分词原理: 利用中文词库,确定汉字之间的关联概率,关联概率大的生成词组 三种分词模式: 1.精确模式:把文本精确的切 ...
- python的jieba分词
# 官方例程 # encoding=utf-8 import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True) print ...
- WordCloud教程(上)
先贴代码: import wordcloud,jieba with open('datas/1.txt') as rt:#,encoding='utf-8' comment_text=rt.read( ...
- Python3 装逼神器---词云(wordcloud)
词云 (Word Cloud)是对文本中出现频率较高的词语给予视觉化展示的图形, 是一种常见的文本挖掘的方法. 实例: 依赖包: # pip3 install wordcloud jieba ...
- Python 词云分析周杰伦《晴天》
一.前言满天星辰的夜晚,他们相遇了...夏天的时候,她慢慢的接近他,关心他,为他付出一切:秋天的时候,两个人终於如愿的在一起,分享一切快乐的时光但终究是快乐时光短暂,因为杰伦必须出国深造,两人面临了要 ...
- python 爬取腾讯微博并生成词云
本文以延参法师的腾讯微博为例进行爬取并分析 ,话不多说 直接附上源代码.其中有比较详细的注释. 需要用到的包有 BeautifulSoup WordCloud jieba # coding:utf-8 ...
- 使用jieba库与wordcloud库第三方库进行词频统计
一.jieba库与wordcloud库的使用 1.jieba库与wordcloud库的介绍 jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最 ...
随机推荐
- 18、docker的持久化存储和数据共享
18.1 Data Volume Docker持久化数据方案 基于本地文件系统的Volume 可以在执行docker create或者docker run的时候,通过-v参数将主机的目录作为容器的 ...
- Java中的时间日期处理
程序就是输入——>处理——>输出.对数据的处理是程序员需要着重注意的地方,快速.高效的对数据进行处理时我们的追求.其中,时间日期的处理又尤为重要和平凡,此次,我将把Java中的时间日期处理 ...
- Oracle EBS中有关Form的触发器的执行顺序
http://blog.csdn.net/postfxj/article/details/8135769 触发器执行顺序: 1. 当打开FORM时: (1) PRE-FORM (2) ...
- ActiveMQ5.0实战三:使用Spring发送,消费topic和queue消息
实战一 , 实战二 介绍了ActiveMQ的基本概念和配置方式. 本篇将通过一个实例介绍使用spring发送,消费topic, queue类型消息的方法. 不懂topic和queue的google 之 ...
- App主导现在 HTML5领衔未来
HTML5能够让开发人员构建丰富的基于Web应用程序,使其能在任何设备中使用标准的Web浏览器.很多人认为HTML5将会让App过时.到底App还是HTML5会是谁赢得最后的胜利,在业界也有不少讨论, ...
- 二叉树(Binary Tree)相关算法的实现
写在前面: 二叉树是比较简单的一种数据结构,理解并熟练掌握其相关算法对于复杂数据结构的学习大有裨益 一.二叉树的创建 [不喜欢理论的点我跳过>>] 所谓的创建二叉树,其实就是让计算机去存储 ...
- jquery.cookie.js 删除cookie
简单交代一下背景:asp.net页面的上的切换登录按钮的点击事件实现cookie的删除. 但是好像没办法直接删除,通过网上提供的方法,可以使用jquery.cookie.js 来操作cookie的创建 ...
- C#之使用AutoUpdater自动更新客户端
安装NuGet包 在Visio studio中右击解决方案,选择管理NuGet包,搜索安装Autoupdater.NET.Official. 工作简介 从服务器下载包含更新文件的XML文件,从中获取软 ...
- 分享一个经验,代码打开mysql链接,执行存储过程时,提示:Table 'mysql.proc' doesn't exist
先说说的场景 老项目,因为服务器升级了mysql数据库版本,从5.7.13升到8.0.15 然而代码里面有直连数据的访问,通过执行存储过程来查询数据的业务,此时抛出异常 Table 'mysql. ...
- docker 搭建Mysql集群
docker基本指令: 更新软件包 yum -y update 安装Docker虚拟机(centos 7) yum install -y docker 运行.重启.关闭Docker虚拟机 servic ...