机器学习中,神经网络算法可以说是当下使用的最广泛的算法。神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位;如果某神经元的电位超过一个阈值,则被激活,否则不被激活。误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一。

误差逆传播算法理论推导

  误差逆传播算法(error back propagation)简称BP网络算法。而一般在说BP网络算法时,默认指用BP算法训练的多层前馈神经网络。

  下面是一个简单的BP神经网络示意图。其拥有一个输入层,一个隐含层,一个输出层。推导中采用这种简单的三层的神经网络。

  定义相关的一些变量如下:

  1. 假设有 d 个输入神经元,有 l 个输出神经元,q 个隐含层神经元;
  2. 设输出层第 j 个神经元的阈值为 θj
  3. 设隐含层第 h 个神经元的阈值为 γh
  4. 输入层第 i 个神经元与隐含层第 h 个神经元之间的连接权为 Vih 
  5. 隐含层第 h 个神经元与输出层第 j 个神经元之间的连接权为 Whj 
  6. 记隐含层第 h 个神经元接收到来自于输入层的输入为 αh:

     

  7. 记输出层第 j 个神经元接收到来自于隐含层的输入为 βj

             ,其中 bh 为隐含层第 h 个神经元的输出

  理论推导:

  在神经网络中,神经元接收到来自来自其他神经元的输入信号,这些信号乘以权重累加到神经元接收的总输入值上,随后与当前神经元的阈值进行比较,然后通过激活函数处理,产生神经元的输出。

  激活函数:

  理想的激活函数是阶跃函数,“0”对应神经元抑制,“1”对应神经元兴奋。然而阶跃函数的缺点是不连续,不可导,且不光滑,所以常用sigmoid函数作为激活函数代替阶跃函数。如下图分别是阶跃函数和sigmoid函数。

  阶跃函数

  sigmoid函数:

  对于一个训练例(xk, yk),假设神经网络的输出为 Yk ,则输出可表示为:

    

f(***)表示激活函数,默认全部的激活函数都为sigmoid函数。

  则可以计算网络上,(xk, yk)的均方差误差为:

    

  乘以1/2是为了求导时能正好抵消掉常数系数。

  现在,从隐含层的第h个神经元看,输入层总共有 d 个权重传递参数传给他,它又总共有 l 个权重传递参数传给输出层, 自身还有 1 个阈值。所以在我们这个神经网络中,一个隐含层神经元有(d+l+1)个参数待确定。输出层每个神经元还有一个阈值,所以总共有 l 个阈值。最后,总共有(d+l+1)*q+l 个待定参数。

首先,随机给出这些待定的参数,后面通过BP算法的迭代,这些参数的值会逐渐收敛于合适的值,那时,神经网络也就训练完成了。

  任意权重参数的更新公式为:

    

  下面以隐含层到输出层的权重参数 whj 为例说明:

  我们可以按照前面给出的公式求出均方差误差 Ek ,期望其为0,或者为最小值。而BP算法基于梯度下降法(gradient descent)来求解最优解,以目标的负梯度方向对参数进行调整,通过多次迭代,新的权重参数会逐渐趋近于最优解。对于误差 Ek ,给定学习率(learning rate)即步长 η ,有:

    

  再看一下参数的传递方向,首先 whj 影响到了输出层神经元的输入值 β,然后影响到输出值 Yj,然后再影响到误差 Ek ,所以可以列出如下关系式:

    

  根据输出层神经元的输入值 β的定义:

    

  得到:

    

  对于激活函数(sigmoid函数):

    

  很容易通过求导证得下面的性质:

    

  使用这个性质进行如下推导:

  令:

    

  又由于:

    

  所以:

     

  由前面的定义有:

    

  所以:

    

  把这个结果结合前面的几个式子代入:

    ,  ,  

  得到:

    

  所以:

    

  OK,上面这个式子就是梯度了。通过不停地更新即梯度下降法就可实现权重更新了。

    

  推导到这里就结束了,再来解释一下式子中各个元素的意义。

    

  η 为学习率,即梯度下降的补偿;为神经网络输出层第 j 个神经元的输出值;为给出的训练例(xk, yk)的标志(label),即训练集给出的正确输出;为隐含层第 h 个神经元的输出。

  

  类似可得:

    

  其中,

    

  这部分的解法与前面的推导方法类似,不做赘述。

  接下来是代码部分:

  这段代码网上也有不少地方可以看到,后面会简单介绍一下程序。

  完整程序:文件名“NN_Test.py”

# _*_ coding: utf-8 _*_

import numpy as np

def tanh(x):
return np.tanh(x) def tanh_derivative(x):
return 1 - np.tanh(x) * np.tanh(x) # sigmod函数
def logistic(x):
return 1 / (1 + np.exp(-x)) # sigmod函数的导数
def logistic_derivative(x):
return logistic(x) * (1 - logistic(x)) class NeuralNetwork:
def __init__ (self, layers, activation = 'tanh'):
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_derivative # 随机产生权重值
self.weights = []
for i in range(1, len(layers) - 1): # 不算输入层,循环
self.weights.append((2 * np.random.random( (layers[i-1] + 1, layers[i] + 1)) - 1) * 0.25 )
self.weights.append((2 * np.random.random( (layers[i] + 1, layers[i+1])) - 1) * 0.25 )
#print self.weights def fit(self, x, y, learning_rate=0.2, epochs=10000):
x = np.atleast_2d(x)
temp = np.ones([x.shape[0], x.shape[1]+1])
temp[:, 0:-1] = x
x = temp
y = np.array(y) for k in range(epochs): # 循环epochs次
i = np.random.randint(x.shape[0]) # 随机产生一个数,对应行号,即数据集编号
a = [x[i]] # 抽出这行的数据集 # 迭代将输出数据更新在a的最后一行
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l], self.weights[l]))) # 减去最后更新的数据,得到误差
error = y[i] - a[-1]
deltas = [error * self.activation_deriv(a[-1])] # 求梯度
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]) ) #反向排序
deltas.reverse() # 梯度下降法更新权值
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0] + 1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a

简要说明:

def tanh(x):
return np.tanh(x) def tanh_derivative(x):
return 1 - np.tanh(x) * np.tanh(x) # sigmod函数
def logistic(x):
return 1 / (1 + np.exp(-x)) # sigmod函数的导数
def logistic_derivative(x):
return logistic(x) * (1 - logistic(x))

分别表示两种激活函数,tanh函数和sigmoid函数以及其的导数,有关激活函数前文有提及。

        if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_derivative

“activation”参数决定了激活函数的种类,是tanh函数还是sigmoid函数。

     self.weights = []
for i in range(1, len(layers) - 1): # 不算输入层,循环
self.weights.append((2 * np.random.random( (layers[i-1] + 1, layers[i] + 1)) - 1) * 0.25 )
self.weights.append((2 * np.random.random( (layers[i] + 1, layers[i+1])) - 1) * 0.25 )
#print self.weights

以隐含层前后层计算产生权重参数,参数初始时随机,取值范围是[-0.25, 0.25]

        x = np.atleast_2d(x)
temp = np.ones([x.shape[0], x.shape[1]+1])
temp[:, 0:-1] = x
x = temp
y = np.array(y)

创建并初始化要使用的变量。

for k in range(epochs): # 循环epochs次
i = np.random.randint(x.shape[0]) # 随机产生一个数,对应行号,即数据集编号
a = [x[i]] # 抽出这行的数据集 # 迭代将输出数据更新在a的最后一行
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l], self.weights[l]))) # 减去最后更新的数据,得到误差
error = y[i] - a[-1]
deltas = [error * self.activation_deriv(a[-1])] # 求梯度
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]) ) #反向排序
deltas.reverse() # 梯度下降法更新权值
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)

进行BP神经网络的训练的核心部分,在代码中有相应注释。

    def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0] + 1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a

这段是预测函数,其实就是将测试集的数据输入,然后正向走一遍训练好的网络最后再返回预测结果。

测试验证函数:

# _*_ coding: utf-8 _*_

from NN_Test import NeuralNetwork
import numpy as np nn = NeuralNetwork([2, 2, 1], 'tanh')
x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(x, y)
for i in [[0, 0], [0, 1], [1, 0], [1, 1]]:
print(i, nn.predict(i))

程序中测试的是异或关系,下面是运行结果:

([0, 0], array([-0.01628435]))
([0, 1], array([ 0.99808061]))
([1, 0], array([ 0.99808725]))
([1, 1], array([-0.03867579]))

显然与标准异或关系近似。

  

机器学习入门学习笔记:(一)BP神经网络原理推导及程序实现的更多相关文章

  1. 【学习笔记】BP神经网络

    转自 huaweizte123的CSDN博客  链接 https://blog.csdn.net/huaweizte123/article/details/78803045 第一步.向前传播得到预测数 ...

  2. [spring入门学习笔记][spring的IoC原理]

    什么叫IoC 控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来减低计算机代码之间的耦合度.其中最常见的方式叫做依赖注入(Dependency ...

  3. [Spring入门学习笔记][Spring的AOP原理]

    AOP是什么? 面向切面编程 软件工程有一个基本原则叫做“关注点分离”(Concern Separation),通俗的理解就是不同的问题交给不同的部分去解决,每部分专注于解决自己的问题.这年头互联网也 ...

  4. 机器学习(4):BP神经网络原理及其python实现

    BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要.接下来,我们对原理和实现展开讨论. 1.原理  有空再慢慢补上,请先参考老外一篇不错的 ...

  5. OpenCV入门学习笔记

    OpenCV入门学习笔记 参照OpenCV中文论坛相关文档(http://www.opencv.org.cn/) 一.简介 OpenCV(Open Source Computer Vision),开源 ...

  6. stylus入门学习笔记

    title: stylus入门学习笔记 date: 2018-09-06 17:35:28 tags: [stylus] description: 学习到 vue, 有人推荐使用 stylus 这个 ...

  7. 汇编入门学习笔记 (七)—— dp,div,dup

    疯狂的暑假学习之  汇编入门学习笔记 (七)--  dp.div.dup 參考: <汇编语言> 王爽 第8章 1. bx.si.di.和 bp 8086CPU仅仅有4个寄存器能够用 &qu ...

  8. 汇编入门学习笔记 (九)—— call和ret

    疯狂的暑假学习之  汇编入门学习笔记 (九)--  call和ret 參考: <汇编语言> 王爽 第10章 call和ret都是转移指令. 1. ret和retf ret指令:用栈中的数据 ...

  9. 汇编入门学习笔记 (十二)—— int指令、port

    疯狂的暑假学习之  汇编入门学习笔记 (十二)--  int指令.port 參考: <汇编语言> 王爽 第13.14章 一.int指令 1. int指令引发的中断 int n指令,相当于引 ...

随机推荐

  1. Launch Google Map in Android / IOS Mobile

    <!--This only works in android mobile phone--><a href="geo:0,0?q=myaddress+encode)__&q ...

  2. uniGUI试用笔记(九)uniGUI执行程序部署有3种形式1

    uniGUI执行程序部署有3种形式 1.ISAPI模式 部署在IIS或Apache,程序编译为Dll形式,没有试,准备后续专门测试一下. 2.标准执行文件模式 将软件编译成一个独立的Exe文件,包括了 ...

  3. Android-fragment的替换-V4支持包

    昨天写的这几篇博客,Android-fragment简介-fragment的简单使用,Activity-fragment-ListView展示,Android-fragment生命周期,Android ...

  4. Android-Activity跳转时动画

    Activity跳转时动画,是在跳转Activity,或者在Activity结束返回 等,用到的进入效果: 第一种效果展示: 第一个Activity的代码: package liudeli.activ ...

  5. char、varchar、nchar、nvarchar特点比较

    于程序中的string型字段,SQLServer中有char.varchar.nchar.nvarchar四种类型来对应(暂时不考虑text和ntext),开建立数据库中,对这四种类型往往比较模糊,这 ...

  6. vs2017 xamarin新建单独UWP类库提示不兼容

    One or more projects are incompatible with UAP,Version=v10.0 (win10-arm). One or more projects are i ...

  7. 在ASP.NET MVC中使用区域来方便管理controller和view

    在ASP.NET MVC中使用区域来方便管理controller和view 在mvc架构中,一般在controllers和views中写所有控制器和视图, 太多控制器时候,为了方便管理,想要将关于pe ...

  8. Vue 进阶之路(十)

    之前的文章介绍了 vue 的组件化,本章我们来看一下 vue 中组件的原生事件. <!DOCTYPE html> <html lang="en"> < ...

  9. Day 4 list 列表的使用方法

     https://www.cnblogs.com/fanison/p/7123532.html s="abcdefg"print("s[3]:",s[3])pr ...

  10. 深入学习c++--左值引用和右值引用

    #include <iostream> #include <string> #include <vector> using namespace std; int m ...