请先阅读上一篇文章:【RL系列】马尔可夫决策过程与动态编程

在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法。虽然上一篇文章中的马尔可夫决策过程模型实现起来比较简单,但我认为其存在两个小问题:

  • 数学表达上不够简洁
  • 状态价值评价型问题与动作价值评价型问题是分离的,形式上不够统一

本篇主要来解决第一个问题。

第一个问题是比较直观的,下面给出状态价值函数以作分析:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1)\sum_{j = 1}^{N(A_i)}P\left[S_{A_i}(j)|A_i, S_1\right] \mathbb{Value}\left[S_{A_i}(j)\right] $$

实际上如果将这个价值函数的后半Futrue Value部分展开了写,可以写为:

$$\begin{align}
\mathbb{Value}(S_1) & = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \left[ \begin{matrix} P\left[S_{A_i}(1)|A_i, S_1\right] \mathbb{Value}S_{A_i}(1) + \\ P\left[S_{A_i}(2)|A_i, S_1\right] \mathbb{Value}S_{A_i}(2) + \\......\\P\left[S_{A_i}(N(A_i))|A_i, S_1\right] \mathbb{Value}S_{A_i}(N(A_i)) \end{matrix} \right] \\& = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \left[\begin{matrix} P\left[S_{A_i}(1)|A_i, S_1\right]\\ P\left[S_{A_i}(2)|A_i, S_1\right]\\ ......\\ P\left[S_{A_i}(N(A_i)|A_i, S_1\right]
\end{matrix} \right]^T \left[\begin{matrix} \mathbb{Value}S_{A_i}(1)\\ \mathbb{Value}S_{A_i}(2)\\ ......\\ \mathbb{Value}S_{A_i}(N(A_i))
\end{matrix} \right] \end{align}$$

可以将关于动作$ A_i $的可能转移状态的价值函数矩阵写为$ \mathbf{V}(A_i) $,将状态转移概率矩阵写为$ \mathbf{P}^{T}(A_i) $,那么价值函数就可以表示为:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \mathbf{P}^{T}(A_i) \mathbf{V}(A_i) $$

如果每一个可执行的动作所可以得到的状态都是固定一样多的话,那么这个式子的形式还可以继续化简。假设在有限马尔可夫决策过程中,存在有限的动作集合$ \mathbb{A} = \{A_1, A_2, ...,A_n \} $和有限的状态集合$ \mathbb{S} = \{S_1, S_2, ...,S_m \} $, 每个动作都可以产生m个有限的状态(如果实际应用中,不可能产生的状态则状态转移概率为0)。所有动作所对应的状态转移概率矩阵$ \mathbb{P} $ 就可以写为:

$$ \mathbb{P} = \left[\begin{matrix} \mathbf{P}^{T}(A_1) \\ \mathbf{P}^{T}(A_2)\\ ......\\ \mathbf{P}^{T}(A_n) \end{matrix}\right] = \left[\begin{matrix} P\left[S_{A_1}(1)|A_1, S_1\right] & P\left[S_{A_1}(2)|A_1, S_1\right]& ... & P\left[S_{A_1}(m)|A_1, S_1\right] \\ P\left[S_{A_2}(1)|A_2, S_1\right] & P\left[S_{A_2}(2)|A_2, S_1\right]& ... & P\left[S_{A_2}(m)|A_2, S_1\right] \\ ...... & ...... & ... & ......\\ P\left[S_{A_n}(1)|A_n, S_1\right] & P\left[S_{A_n}(2)|A_n, S_1\right]& ... & P\left[S_{A_n}(m)|A_n, S_1\right] \end{matrix}\right] $$

我们同样可以设动作转移概率举证$ \mathbf{\Pi} $为:

$$ \mathbf{\Pi} = \left[\begin{matrix} \pi(A_1|S_1)\\ \pi(A_2|S_1)\\ ......\\ \pi(A_n|S_1) \end{matrix}\right]^{T} $$

这样我们就可以将对状态$ S_1 $的价值评价的一般形式写出来:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \mathbf{\Pi} \mathbb{P} \mathbf{V}$$

到目前位置所有公式的推导都有一个大前提,就是当前状态为$ S_1 $,如果我们将价值函数的一般形式推广到所有状态,那么除了向量$ \mathbf{V} $外,每个项的维度都会提升一个。这样的话,$\mathbf{\Pi}$矩阵变为二维矩阵,状态转移矩阵$\mathbb{P}$变为一个三维矩阵,即张量$ \mathrm{P}_{s'a}^{s} $

$$ \mathrm{P} = \mathrm{fold} \left[\begin{matrix} \mathbb{P}(S_1) \\ \mathbb{P}(S_2) \\......\\ \mathbb{P}(S_m) \end{matrix} \right] $$

至此我们可以写出状态价值函数的最一般形式:

$$ \mathbf{V} = \mathbf{R} + \gamma \mathbf{\Pi} \mathrm{P}_{s',a}^{s} \mathbf{V} $$

我们可以用状态转移图将该式表示出来,这样更加直观:

【RL系列】马尔可夫决策过程中状态价值函数的一般形式的更多相关文章

  1. 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价

    请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...

  2. 强化学习入门基础-马尔可夫决策过程(MDP)

    作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...

  3. 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无 ...

  4. 转:增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  5. 增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  6. 【RL系列】马尔可夫决策过程——Jack‘s Car Rental

    本篇请结合课本Reinforcement Learning: An Introduction学习 Jack's Car Rental是一个经典的应用马尔可夫决策过程的问题,翻译过来,我们就直接叫它“租 ...

  7. [Reinforcement Learning] 马尔可夫决策过程

    在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性. 情节性任务 vs. 连续任务 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作 ...

  8. 【cs229-Lecture16】马尔可夫决策过程

    之前讲了监督学习和无监督学习,今天主要讲“强化学习”. 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iter ...

  9. 强化学习-MDP(马尔可夫决策过程)算法原理

    1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框 ...

随机推荐

  1. 关于ssm框架使用mysql控制台出现警告问题

    使用MySQL时,总会时不时出现这种警告信息 警告信息:WARN: Establishing SSL connection without server's identity verification ...

  2. Python学习笔记系列——函数

    今年下半年的计划主要是Python和Mysql了,公司不方便看书和视频,就照着廖雪峰的Python网站开始看了.以下纯为个人笔记记录,若是想系统学习的小伙伴还是看这里的好一些,毕竟系统.https:/ ...

  3. P1776 宝物筛选_NOI导刊2010提高(02)

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  4. 内部元素一一相应的集合的算法优化,从list到hashmap

    说是算法优化,基本上是在吹牛,仅仅只是算是记录下,我写代码时候的思路.毕竟还是小菜鸟. 我要开一个party,与会者都是情侣,可是情侣并非一起过来的,而是有先有后,可是每位与会者来的时候都拿着一束鲜花 ...

  5. 【vue】本地开发mock数据支持

    项目离不开数据渲染的支持,为本地开发配置 数据  支持. (一)方式一:安装JSON Server搭建mock数据的服务器 json Server 是一个创建 伪RESTful服务器的工具. 配置流程 ...

  6. Python 包、模块、函数、变量作用域

    Python 项目的组织结构 - 包 -- 模块 --- 类 ---- 函数.变量   Python是利用包和模块来组织一个项目的.   包: 包的物理表现是一个文件夹,但是一个文件夹却不一定是个包, ...

  7. jQuery----淘宝商品展示(类似与tab切换)

    实现效果如图:                 功能需求: ①鼠标进入商品名称,商品名称变色,同时对应的物品展示图片显示对应的物品,鼠标移出时候,商品名称恢复原来的颜色 实现分析: 1.HTML+CS ...

  8. day91 DjangoRestFramework学习三之认证组件、权限组件、频率组件、url注册器、响应器、分页组件

    DjangoRestFramework学习三之认证组件.权限组件.频率组件.url注册器.响应器.分页组件   本节目录 一 认证组件 二 权限组件 三 频率组件 四 URL注册器 五 响应器 六 分 ...

  9. go 数组、切片

    数组定义      // 标准 ]], , , , } fmt.Println("a", a) // 自动推导类型 b := [], , , , } fmt.Println(&qu ...

  10. 【转】比较详细的Asp伪静态化方法及Asp静态化探讨

    目前,各大搜索引擎如google.百度.雅虎已经对动态页面诸如asp,php有着不错的支持了,只要动态页面后面的参数不要太长,如控制在3个参数内,页面内容做点优化,各大搜索对该类页面收录甚至不比静态h ...