请先阅读上一篇文章:【RL系列】马尔可夫决策过程与动态编程

在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法。虽然上一篇文章中的马尔可夫决策过程模型实现起来比较简单,但我认为其存在两个小问题:

  • 数学表达上不够简洁
  • 状态价值评价型问题与动作价值评价型问题是分离的,形式上不够统一

本篇主要来解决第一个问题。

第一个问题是比较直观的,下面给出状态价值函数以作分析:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1)\sum_{j = 1}^{N(A_i)}P\left[S_{A_i}(j)|A_i, S_1\right] \mathbb{Value}\left[S_{A_i}(j)\right] $$

实际上如果将这个价值函数的后半Futrue Value部分展开了写,可以写为:

$$\begin{align}
\mathbb{Value}(S_1) & = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \left[ \begin{matrix} P\left[S_{A_i}(1)|A_i, S_1\right] \mathbb{Value}S_{A_i}(1) + \\ P\left[S_{A_i}(2)|A_i, S_1\right] \mathbb{Value}S_{A_i}(2) + \\......\\P\left[S_{A_i}(N(A_i))|A_i, S_1\right] \mathbb{Value}S_{A_i}(N(A_i)) \end{matrix} \right] \\& = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \left[\begin{matrix} P\left[S_{A_i}(1)|A_i, S_1\right]\\ P\left[S_{A_i}(2)|A_i, S_1\right]\\ ......\\ P\left[S_{A_i}(N(A_i)|A_i, S_1\right]
\end{matrix} \right]^T \left[\begin{matrix} \mathbb{Value}S_{A_i}(1)\\ \mathbb{Value}S_{A_i}(2)\\ ......\\ \mathbb{Value}S_{A_i}(N(A_i))
\end{matrix} \right] \end{align}$$

可以将关于动作$ A_i $的可能转移状态的价值函数矩阵写为$ \mathbf{V}(A_i) $,将状态转移概率矩阵写为$ \mathbf{P}^{T}(A_i) $,那么价值函数就可以表示为:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \sum_{i = 1}^{n} \pi(A_i|S_1) \mathbf{P}^{T}(A_i) \mathbf{V}(A_i) $$

如果每一个可执行的动作所可以得到的状态都是固定一样多的话,那么这个式子的形式还可以继续化简。假设在有限马尔可夫决策过程中,存在有限的动作集合$ \mathbb{A} = \{A_1, A_2, ...,A_n \} $和有限的状态集合$ \mathbb{S} = \{S_1, S_2, ...,S_m \} $, 每个动作都可以产生m个有限的状态(如果实际应用中,不可能产生的状态则状态转移概率为0)。所有动作所对应的状态转移概率矩阵$ \mathbb{P} $ 就可以写为:

$$ \mathbb{P} = \left[\begin{matrix} \mathbf{P}^{T}(A_1) \\ \mathbf{P}^{T}(A_2)\\ ......\\ \mathbf{P}^{T}(A_n) \end{matrix}\right] = \left[\begin{matrix} P\left[S_{A_1}(1)|A_1, S_1\right] & P\left[S_{A_1}(2)|A_1, S_1\right]& ... & P\left[S_{A_1}(m)|A_1, S_1\right] \\ P\left[S_{A_2}(1)|A_2, S_1\right] & P\left[S_{A_2}(2)|A_2, S_1\right]& ... & P\left[S_{A_2}(m)|A_2, S_1\right] \\ ...... & ...... & ... & ......\\ P\left[S_{A_n}(1)|A_n, S_1\right] & P\left[S_{A_n}(2)|A_n, S_1\right]& ... & P\left[S_{A_n}(m)|A_n, S_1\right] \end{matrix}\right] $$

我们同样可以设动作转移概率举证$ \mathbf{\Pi} $为:

$$ \mathbf{\Pi} = \left[\begin{matrix} \pi(A_1|S_1)\\ \pi(A_2|S_1)\\ ......\\ \pi(A_n|S_1) \end{matrix}\right]^{T} $$

这样我们就可以将对状态$ S_1 $的价值评价的一般形式写出来:

$$ \mathbb{Value}(S_1) = \mathbb{Reward}(S_1) + \gamma \mathbf{\Pi} \mathbb{P} \mathbf{V}$$

到目前位置所有公式的推导都有一个大前提,就是当前状态为$ S_1 $,如果我们将价值函数的一般形式推广到所有状态,那么除了向量$ \mathbf{V} $外,每个项的维度都会提升一个。这样的话,$\mathbf{\Pi}$矩阵变为二维矩阵,状态转移矩阵$\mathbb{P}$变为一个三维矩阵,即张量$ \mathrm{P}_{s'a}^{s} $

$$ \mathrm{P} = \mathrm{fold} \left[\begin{matrix} \mathbb{P}(S_1) \\ \mathbb{P}(S_2) \\......\\ \mathbb{P}(S_m) \end{matrix} \right] $$

至此我们可以写出状态价值函数的最一般形式:

$$ \mathbf{V} = \mathbf{R} + \gamma \mathbf{\Pi} \mathrm{P}_{s',a}^{s} \mathbf{V} $$

我们可以用状态转移图将该式表示出来,这样更加直观:

【RL系列】马尔可夫决策过程中状态价值函数的一般形式的更多相关文章

  1. 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价

    请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...

  2. 强化学习入门基础-马尔可夫决策过程(MDP)

    作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...

  3. 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无 ...

  4. 转:增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  5. 增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  6. 【RL系列】马尔可夫决策过程——Jack‘s Car Rental

    本篇请结合课本Reinforcement Learning: An Introduction学习 Jack's Car Rental是一个经典的应用马尔可夫决策过程的问题,翻译过来,我们就直接叫它“租 ...

  7. [Reinforcement Learning] 马尔可夫决策过程

    在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性. 情节性任务 vs. 连续任务 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作 ...

  8. 【cs229-Lecture16】马尔可夫决策过程

    之前讲了监督学习和无监督学习,今天主要讲“强化学习”. 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iter ...

  9. 强化学习-MDP(马尔可夫决策过程)算法原理

    1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框 ...

随机推荐

  1. jQuery全选反选插件

    (function($){ $.fn.check = function(options){ var options = $.extend({ element : "input[name='n ...

  2. openstack常用的一些命令

    查看rabbitmq 队列 rabbitmqctl list_queues 复制代码 查看keystone的用户 keystone user-list 复制代码 查看keystone endpoint ...

  3. 常用的sql语法_Row_Number

    可用来分页,也可以用来egg:获取同类型的最新的信息 ROW_NUMBER() 说明:返回结果集分区内行的序列号,每个分区的第一行从1开始.语法:ROW_NUMBER () OVER  ([ < ...

  4. linux shell基本知识 sleep命令

    在有的shell(比如linux中的bash)中sleep还支持睡眠(分,小时) sleep 睡眠1秒 sleep 1s 睡眠1秒 sleep 1m 睡眠1分 sleep 1h 睡眠1小时

  5. PATtest1.3:最大子列和

    题目源于:https://pintia.cn/problem-sets/16/problems/663 题目要求:输入一个数列,求其最大子列和. 问题反馈:1.部分C++代码不是很熟练 2.没有仔细读 ...

  6. 一个简单好用的http服务器

    http-server 是一个简单的零配置命令行HTTP服务器, 基于 nodeJs. 如果你不想重复的写 nodeJs 的 web-server.js, 则可以使用这个. 安装 (全局安装加 -g) ...

  7. 用ansible2.5在Centos7.2上部署OpenShift3.9(转)

    1.环境: 主机名      ip                   角色 master    10.2.1.198      master node1     10.2.1.174      no ...

  8. 【CSS3】特殊的属性归纳(二)

    这篇是看到博友 酷赛瑞 整理的文章才发现还有这么多有用的css3属性可以用. 附上链接:http://www.cnblogs.com/cosiray/archive/2012/12/06/280477 ...

  9. 【jq】插件—弹出层layer.js

    layer.js包含了所有的层级情形,并且附加的有:tab层,相册层.webIM层. 适用于移动版本的layer.js   为layer for mobile 配套的layui 非常适合用于后台系统的 ...

  10. KVM虚拟机IO处理过程(一) ----Guest VM I/O 处理过程

    虚拟化技术主要包含三部分内容:CPU虚拟化,内存虚拟化,设备虚拟化.本系列文章主要描述磁盘设备的虚拟化过程,包含了一个读操作的I/O请求如何从Guest Vm到其最终被处理的整个过程.本系列文章中引用 ...