【推荐系统】neural_collaborative_filtering(源码解析)
很久没看推荐系统相关的论文了,最近发现一篇2017年的论文,感觉不错。
原始论文 https://arxiv.org/pdf/1708.05031.pdf
网上有翻译了 https://www.cnblogs.com/HolyShine/p/6728999.html
git项目 https://github.com/hexiangnan/neural_collaborative_filtering
项目的主题框架如下:

代码是使用keras来实现的深度学习,其中GMF.py是传统的Matrix Factorization算法,关键代码分为两部分:
def get_model(num_users, num_items, latent_dim, regs=[0,0]):
# Input variables
user_input = Input(shape=(1,), dtype='int32', name = 'user_input')
item_input = Input(shape=(1,), dtype='int32', name = 'item_input') MF_Embedding_User = Embedding(input_dim = num_users, output_dim = latent_dim, name = 'user_embedding',
init = init_normal, W_regularizer = l2(regs[0]), input_length=1)
MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = latent_dim, name = 'item_embedding',
init = init_normal, W_regularizer = l2(regs[1]), input_length=1) # Crucial to flatten an embedding vector!
user_latent = Flatten()(MF_Embedding_User(user_input))
item_latent = Flatten()(MF_Embedding_Item(item_input)) # Element-wise product of user and item embeddings
predict_vector = merge([user_latent, item_latent], mode = 'mul') # Final prediction layer
#prediction = Lambda(lambda x: K.sigmoid(K.sum(x)), output_shape=(1,))(predict_vector)
prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(predict_vector) model = Model(input=[user_input, item_input],
output=prediction) return model
上述代码是构建模型结构,首先定义Input为一维多列的数据,然后是Embedding层,Embedding主要是为了降维,就是起到了look up的作用,然后是Merge层,将用户和物品的张量进行了内积相乘(latent_dim 表示两者的潜在降维的维度是相同的,因此可以做内积),紧接着是一个全连接层,激活函数为sigmoid。

下面是MLP.py的源码:
def get_model(num_users, num_items, layers = [20,10], reg_layers=[0,0]):
assert len(layers) == len(reg_layers)
num_layer = len(layers) #Number of layers in the MLP
# Input variables
user_input = Input(shape=(1,), dtype='int32', name = 'user_input')
item_input = Input(shape=(1,), dtype='int32', name = 'item_input') MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = layers[0]/2, name = 'user_embedding',
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1)
MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = layers[0]/2, name = 'item_embedding',
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) # Crucial to flatten an embedding vector!
user_latent = Flatten()(MLP_Embedding_User(user_input))
item_latent = Flatten()(MLP_Embedding_Item(item_input)) # The 0-th layer is the concatenation of embedding layers
vector = merge([user_latent, item_latent], mode = 'concat') # MLP layers
for idx in xrange(1, num_layer):
layer = Dense(layers[idx], W_regularizer= l2(reg_layers[idx]), activation='relu', name = 'layer%d' %idx)
vector = layer(vector) # Final prediction layer
prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(vector) model = Model(input=[user_input, item_input],
output=prediction) return model
最重要的也是构建模型的部分,与GMF不同的有两个部分,首先是user_latent和item_latent的merge的部分,不再采用内积的形式,而是contract拼接的方式;再者就是for循环构建深层全连接神经网络,内部Layer的激活函数是relu,最后一层的激活函数仍然是sigmoid。

接下来是NeuMF.py,将MLP和GMF进行了融合,模型构建代码如下
def get_model(num_users, num_items, mf_dim=10, layers=[10], reg_layers=[0], reg_mf=0):
assert len(layers) == len(reg_layers)
num_layer = len(layers) #Number of layers in the MLP
# Input variables
user_input = Input(shape=(1,), dtype='int32', name = 'user_input')
item_input = Input(shape=(1,), dtype='int32', name = 'item_input') # Embedding layer
MF_Embedding_User = Embedding(input_dim = num_users, output_dim = mf_dim, name = 'mf_embedding_user',
init = init_normal, W_regularizer = l2(reg_mf), input_length=1)
MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = mf_dim, name = 'mf_embedding_item',
init = init_normal, W_regularizer = l2(reg_mf), input_length=1) MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = layers[0]/2, name = "mlp_embedding_user",
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1)
MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = layers[0]/2, name = 'mlp_embedding_item',
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1) # MF part
mf_user_latent = Flatten()(MF_Embedding_User(user_input))
mf_item_latent = Flatten()(MF_Embedding_Item(item_input))
mf_vector = merge([mf_user_latent, mf_item_latent], mode = 'mul') # element-wise multiply # MLP part
mlp_user_latent = Flatten()(MLP_Embedding_User(user_input))
mlp_item_latent = Flatten()(MLP_Embedding_Item(item_input))
mlp_vector = merge([mlp_user_latent, mlp_item_latent], mode = 'concat')
for idx in xrange(1, num_layer):
layer = Dense(layers[idx], W_regularizer= l2(reg_layers[idx]), activation='relu', name="layer%d" %idx)
mlp_vector = layer(mlp_vector) # Concatenate MF and MLP parts
#mf_vector = Lambda(lambda x: x * alpha)(mf_vector)
#mlp_vector = Lambda(lambda x : x * (1-alpha))(mlp_vector)
predict_vector = merge([mf_vector, mlp_vector], mode = 'concat') # Final prediction layer
prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = "prediction")(predict_vector) model = Model(input=[user_input, item_input],
output=prediction) return model
代码的前半部分分别是GMFe和MLP的内部layer构建过程,在 predict_vector = merge([mf_vector, mlp_vector], mode = 'concat')这一行开始对两者的输出进行了merge,方式为concat。最后包了一层的sigmoid。
看完了构建模型的代码,下面关注几个细节:
- 训练样本的正负比例如何设定?
def get_train_instances(train, num_negatives):
user_input, item_input, labels = [],[],[]
num_users = train.shape[0]
for (u, i) in train.keys():
# positive instance
user_input.append(u)
item_input.append(i)
labels.append(1)
# negative instances
for t in xrange(num_negatives):
j = np.random.randint(num_items)
while train.has_key((u, j)):
j = np.random.randint(num_items)
user_input.append(u)
item_input.append(j)
labels.append(0)
return user_input, item_input, labels该函数是获取用户和物品的训练数据,其中num_negatives控制着正负样本的比例,负样本的获取方法也简单粗暴,直接随机选取用户没有选择的其余的物品。
- 保存了训练的模型,该怎么对数据进行预测?我们从evalute.py中的源码中可以得到答案
def eval_one_rating(idx):
rating = _testRatings[idx]
items = _testNegatives[idx]
u = rating[0]
gtItem = rating[1]
items.append(gtItem)
# Get prediction scores
map_item_score = {}
users = np.full(len(items), u, dtype = 'int32')
predictions = _model.predict([users, np.array(items)],
batch_size=100, verbose=0)
for i in xrange(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop() # Evaluate top rank list
ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)输入只要保证和训练的时候的格式一样即可,这里作者事先构建了negative的数据,也就是说对negative的物品和测试集合中的某一个物品进行了预测,最终选取topK的,来评测是否在其中(注getHitRatio函数不是最终结果,只是0/1) eval_one_rating 函数只是对测试集合中的某个用户的某个物品,以及和事先划分好的负样本组合在一起进行预测,最终输出该测试物品是否在topK中。
- Embedding 层的物品的latent_dim和用户的latent_dim是一致的,如果不一致是否可以?在实际中未必两者的维度是一致的,这里受限于keras的merge函数的参数要求,输入的数据的shape必须是一致的,所以必须是一致的。以及Merge中的mode参数,至于什么时候选择contact,什么时候选择mul,我觉得依赖于模型效果,在实际工程中选择使得最优的方式。
python MLP.py --dataset ml-1m --epochs 20 --batch_size 256 --layers [64,32,16,8]这是运行MLP的参数,layers的参数在逐渐减小,这也是深度神经网络的潜在设置,一般意义上越深的layer是对前面的更高层次的抽象。
【推荐系统】neural_collaborative_filtering(源码解析)的更多相关文章
- Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析
Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析 生鲜电商搜索引擎的特点 众所周知,标准的搜索引擎主要分成三个大的部分,第一步是爬虫系统,第二步是数据分析,第三步才 ...
- [源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现
[源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 目录 [源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 0x00 摘要 0x01 概述 1.1 什么是GPip ...
- [源码解析] NVIDIA HugeCTR,GPU 版本参数服务器 --(1)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器 --(1) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器 --(1) 0x00 摘要 0x01 背景 1.1 ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 0x00 摘要 0x01 总体流程 ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器---(3) 0x00 摘要 0x01 回顾 0x0 ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (4)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (4) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (4) 0x00 摘要 0x01 总体流程 ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (5) 嵌入式hash表 ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (6) --- Distributed hash表
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (6) --- Distributed hash表 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- ...
- [源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(7) ---Distributed Hash之前向传播
[源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(7) ---Distributed Hash之前向传播 目录 [源码解析] NVIDIA HugeCTR,GPU 版本参数服务 ...
- [源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(8) ---Distributed Hash之后向传播
[源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(8) ---Distributed Hash之后向传播 目录 [源码解析] NVIDIA HugeCTR,GPU 版本参数服务 ...
随机推荐
- MySQL IFNULL基本用法
MySQL IFNULL函数是MySQL控制流函数之一,它接受两个参数,如果不是NULL,则返回第一个参数. 否则,IFNULL函数返回第二个参数. 两个参数可以是文字值或表达式. 以下说明了IFNU ...
- P2904 [USACO08MAR]跨河River Crossing
题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...
- ZOJ 3872 浙江2015年省赛试题
D - Beauty of Array Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu S ...
- Redis数据类型基本操作
String类型: 设置键值对: set key value 设置键值对和过期时间:setex key seconds value ( 以秒为单位 ) 设置多个键值对: mset key1 value ...
- win7上代码连接hadoop出现错误 :org.apache.hadoop.util.NativeCrc32.nativeComputeChunkedSumsByteArray(II[BI[BIILjava/lang/String;JZ)V
在idea和eclipse中调试hadoop中hdfs文件,之前好好的,结果突然就出现java.lang.UnsatisfiedLinkError: org.apache.hadoop.util.Na ...
- 2017-2018-1 20155313 《信息安全系统设计基础》 Myod
2017-2018-1 20155313 <信息安全系统设计基础> Myod Myod要求 1.复习c文件处理内容 2.编写myod.c 用myod XXX实现Linux下od -tx - ...
- 20145209刘一阳《JAVA程序设计》第十五周补充测试
第十五周补充测试 1.实验楼Linux中可以通过(ABC)查看用户登录情况. A .who B .who am i C .who mom likes D .who are you 2.在 Linux ...
- PowerDesigner16.5物理数据表生成C#实体类Model
原文:PowerDesigner16.5物理数据表生成C#实体类Model 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/da454122373/a ...
- C++实现tar包解析
tar(tape archive)是Unix和类Unix系统上文件打包工具,可以将多个文件合并为一个文件,使用tar工具打出来的包称为tar包.一般打包后的文件名后缀为".tar" ...
- 11 基于django的图书管理系统 多表
1.需求 作业需求:1.列出图书列表.出版社列表.作者列表2.点击作者,会列出其出版的图书列表3.点击出版社,会列出旗下图书列表4.可以创建.修改.删除 图书.作者.出版社 踩分点:1.满足需求1,2 ...