P3811 【模板】乘法逆元

一个刚学数论的萌新,总结了一下这题的大部分做法

//一、费马小定理+快速幂  O(nlogn) 64分
#include<cstdio>
using namespace std;
typedef long long ll;
int a,b;
inline ll pow(ll x,ll p) {
ll ans=1;
x%=b;
while(p) {
if (p&1) ans=ans*x%b;
x=x*x%b;
p>>=1;
}
return ans%b;
}
inline void write(int x) {
if(x>9) write(x/10);
putchar(x%10^48);
}
int main() {
scanf("%d%d",&a,&b);
for (int i=1; i<=a; i++) {
write(pow(i,b-2));
putchar('\n');
}
}
//二、exgcd O(nlogn)  80分

#include<cstdio>
using namespace std;
typedef int ll;
ll x,y,a,b;
inline void exgcd(ll a,ll b) {
if (!b) x=1,y=0;
else {exgcd(b,a%b); int t=x; x=y,y=t-a/b*y;}
}
inline void write(int x){
if(x>9) write(x/10);
putchar(x%10^48);
}
int main() {
scanf("%d%d",&a,&b);
for (int i=1; i<=a; i++) {
exgcd(i,b);
write((x%b+b)%b);
putchar('\n');
}
}
//三、费马小定理+快速幂+线性筛 合数O(1),质数O(nlogn) 80分
#include <cstdio>
using namespace std;
typedef long long ll;
ll n,p,inv[3000010],vis[3000010];
ll pow(ll x,int b) {
ll ans=1;
for (int i=b; i; i>>=1,x=x*x%p)
if (i&1) ans=ans*x%p;
return ans%p;
}
void work() {
inv[1]=vis[1]=1;
for (int i=2; i<=n; i++)
if (!vis[i]) {
vis[i]=1;
inv[i]=pow(i,p-2);
for (int j=2; j<=i && j*i<=n; j++)
vis[i*j]=1,inv[i*j]=(inv[i]*inv[j])%p;
}
}
int main() {
scanf("%lld%lld",&n,&p);
work();
for (int i=1; i<=n; i++) printf("%lld\n",inv[i]);
return 0;
}
//四、阶乘+1次快速幂 O(n) 100分 607ms

#include<cstdio>
#define ll long long
using namespace std;
int n,p;
ll c[3000005],ans[3000005];
ll ksm(ll x,ll y)
{
ll an=1;
while(y)
{
if(y&1)
an=(an*x)%p;
x=(x*x)%p;
y>>=1;
}
return an;
}
int main()
{
scanf("%d%d",&n,&p);
c[0]=1;
for (int i=1;i<=n;i++) c[i]=(c[i-1]*i)%p;
ll pow=ksm(c[n],p-2),k;
for(int i=n;i;i--)
{
k=(pow*i)%p;
ans[i]=(pow*c[i-1])%p;
pow=k;
}
for(int i=1;i<=n;i++)
printf("%lld\n",ans[i]);
}
//五、线性递推 O(n) 100分 560ms
#include<cstdio>
#define ll long long
using namespace std;
ll inv[3000005]={0,1};
int main()
{
int n,p;
scanf("%d%d",&n,&p);
printf("1\n");
for (int i=2;i<=n;i++)
printf("%d\n",inv[i]=(ll)p-(p/i)*inv[p%i]%p);
return 0;
}

题解 P3811 【【模板】乘法逆元】的更多相关文章

  1. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  2. 【ZOJ 3609】Modular Inverse 最小乘法逆元

    The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x  ...

  3. P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性递推逆元模板 #include<iostream> #include<cstdio> #include<cstring> #def ...

  4. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  5. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  6. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  7. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  8. 逆元-P3811 【模板】乘法逆元-洛谷luogu

    https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...

  9. luogu P3811 【模板】乘法逆元

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

随机推荐

  1. Elevated privileges for Delphi applications

    BY CRAIG CHAPMAN · PUBLISHED 2015-06-08 · UPDATED 2015-06-08   One of my customers recently asked th ...

  2. QT 线程池 + TCP 小试(三)实现最终功能

    *免分资源链接点击打开链接http://download.csdn.net/detail/goldenhawking/4492378 有了TCP.线程池,我们就可以把他们连接起来.使用最简单的 QMa ...

  3. Bokeh 0.9.0dev 发布,交互式可视化库

    快速使用Romanysoft LAB的技术实现 HTML 开发Mac OS App,并销售到苹果应用商店中.   <HTML开发Mac OS App 视频教程> 土豆网同步更新:http: ...

  4. window8 飘带与页面切换效果

    演示效果如下 用鼠标点击滑动试试就能看到效果了 ^_^ iscroll 不仅可以做到自然滚动条的效果,看官方文档还可以用来做页面切换的效果,很好很强大. 所以我结合流行的飘带元素做了个简单的例子.. ...

  5. Codility--- NumberOfDiscIntersections

    Task description We draw N discs on a plane. The discs are numbered from 0 to N − 1. A zero-indexed ...

  6. Oracle expdp/impdp 使用示例

    1. 创建目录 使用数据泵之前,需要创建一个存放文件的目录. 这个目录要写入Oracle的数据字典中才能识别. (1)先查看一下已经存在的目录: SQL> col owner format a5 ...

  7. JVM检测&工具

    前几篇篇文章介绍了介绍了JVM的参数设置并给出了一些生产环境的JVM参数配置参考方案.正如之前文章中提到的JVM参数的设置需要根据应用的特性来进行设置,每个参数的设置都需要对JVM进行长时间的监测,并 ...

  8. vue2.0父子组件以及非父子组件通信传参详解

    1.父组件传递数据给子组件 父组件数据如何传递给子组件呢?可以通过props属性来实现 父组件: <parent> <child :child-msg="msg" ...

  9. 【设计模式】行为型04迭代器模式(Iterator Pattern)

    学习地址:http://www.runoob.com/design-pattern/iterator-pattern.html 迭代器模式,简单来说就是通过迭代的方式对集合进行遍历,在集合的学习中也一 ...

  10. 汇编入门三-CPU工作原理

    本文为读书笔记,个人总结与摘抄自<汇编语言 第二版> 1.CPU从内存中读取数据,首先要获得存储单元的地址. 2.指明进行的操作,如存储或者读写 所以,CPU要进行操作总结为: 1.存储单 ...