简单声明

我是蒟蒻不会推式子。。。

所以我用的是乱搞做法。。。

大自然的选择

这里我用的乱搞做法被闪指导赐名为“自然算法”,对于这种输入信息很少的概率题一般都很适用。

比如此题,对于一组\(n,m\),我们可以进行\(10^6\)次随机,每次随机\(n\)个\(0\sim1\)之间的实数表示这个点在圆上的位置,然后我们暴力判断,用一个变量\(t\)记录下合法次数。

然后我们输出\(\frac t{10^6}\)就能得出大致概率了。

找规律

显然,上面这个“自然算法”精度误差较大,且我们要输出的是取模意义下的结果而非实数。

但是,该算法输出的结果,已经够我们找规律了。

首先,我们输入\(n=2,m=2,3,4,5\)可得\(1,\frac23,\frac12,\frac25\),即\(\frac2m\)。

然后,我们输入\(n=3,m=2,3,4,5\)可得\(\frac34,\frac13,\frac3{16},\frac3{25}\),即\(\frac 3{m^2}\)。

这时候我们似乎就可以大力猜测,答案就是\(\frac n{m^{n-1}}\)。

再代几组数据用“自然算法”验证,发现都符合这个结论,于是我们就可以姑且认为它正确了。

这样就过了。其实就是乱搞。

代码

“自然算法”:

#include<bits/stdc++.h>
#define T 1000000
#define R() 1.0*rand()/RAND_MAX//随机实数
using namespace std;
int n,m;double a[(int)1e7+5];
int main()
{
srand(time(NULL));int t=0;scanf("%d%d",&n,&m);for(int i=1;i<=T;++i)
{
for(int j=1;j<=n;++j) a[j]=R();sort(a+1,a+n+1);//随机n个点
double Mx=a[1]-a[n]+1;for(int j=1;j^n;++j) a[j+1]-a[j]>Mx&&(Mx=a[j+1]-a[j]);
1-Mx<1.0/m&&++t;//统计合法情况数
}return printf("%.7lf",1.0*t/T),0;
}

最终代码:

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define X 998244353
#define Qinv(x) Qpow(x,X-2)
using namespace std;
int n,m;
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}
int main()
{
freopen("ran.in","r",stdin),freopen("ran.out","w",stdout);
return scanf("%d%d",&n,&m),printf("%d",1LL*n*Qpow(Qinv(m),n-1)%X),0;//直接输出
}

【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)的更多相关文章

  1. 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)

    卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...

  2. 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)

    从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...

  3. 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)

    分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...

  4. 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)

    树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...

  5. 【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)

    森林 考虑到题目中给出条件两点间至多只有一条路径. 就可以发现,这是一个森林. 而森林有一个很有用的性质. 考虑对于一棵树,点数-边数=\(1\). 因此对于一个森林,点数-边数=连通块个数. 所以, ...

  6. 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)

    \(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...

  7. 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)

    题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...

  8. 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)

    莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...

  9. 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)

    二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...

随机推荐

  1. Vs Code 2019软件安装教程及常用的入门设置

    小编认为VsCode是一款非常好用的编辑器,插件丰富,支持的语言种类非常多.我所使用VsCode主要打一些前端的代码,自己感觉very good. 点击运行. 按图所示操作. 安装教程很简单的,主要是 ...

  2. IT兄弟连 Java语法教程 综合案例

    1.案例需求 编写程序,模拟斗地主游戏洗牌和发牌的流程. 2.应用知识 ●  数组的声明 ●  数组的遍历 ●  for循环 ●  if-else分支结构 3.需求解析 模拟斗地主游戏洗牌和发牌,需要 ...

  3. IT兄弟连 Java语法教程 流程控制语句 分支结构语句1

    不论哪一种编程语言,都会提供两种基本的流程控制结构:分支结构和循环结构.其中分支结构用于实现根据条件来选择性地执行某段代码,循环结构则用于实现根据循环条件重复执行某段代码.Java同样提供了这两种流程 ...

  4. IT兄弟连 Java语法教程 数据类型3

    字符型 在Java中,用于存储字符串的数据类型是char.然而,C/C++程序员要当心:Java中的char与C或C++中的char是不同的.在C/C++中,char的宽度是8位.而在Java中不是这 ...

  5. Python的定时执行

    最近手把手教妹子写Python,被一篇博客误导了,这里记录一下. 妹子需要的是一个定时闹钟,到点往钉钉群里推个消息.她一顿搜索猛如虎,参照着其他人的博客,搞了一个while: target_time ...

  6. 黄聪:后门(Webshell)

    <?php if ("hello"==$_GET["test"]){ echo "testtrue";}if(is_uploaded_ ...

  7. Java开发桌面程序学习(四)——常用应用布局模板和简单分析

    布局 前言 刚开始的时候,不知道使用什么布局,发现SceneBuilder其实有8.5版本的,里面就是有提供一个简单的桌面程序模板,8.5可以去官网下载,不过网速好像有点慢,慢慢等吧,官网下载地址 布 ...

  8. .net core程序强制以管理员权限启动

    当我们编写windows程序的时候,很多时候需要程序默认以管理员权限运行,以前在.net 程序中直接新建一个app.manifest,设置requestedExecutionLevel 节点即可 &l ...

  9. VS2017安装使用Easyx时出现的问题及解决方法

    EasyX 是针对 Visual C++ 的绘图库,在初学 C 语言实现图形和游戏编程.图形学.分形学等需要绘图实践的领域有一定应用. EasyX 库在 Visual C++ 中模拟了 Turbo C ...

  10. c#中取绝对值

    记一次工作中查询的资料: System.Math.Abs(float value); System.Math.Abs(decimal value); System.Math.Abs(int value ...