扩展KMP笔记
KMP能计算一个字符串的每个位置前最长公共前缀后缀
扩展KMP可以用来计算两个字符串间的最长公共前缀后缀的……
不过为了计算这个需要绕些弯路
已知字符串$S$和$P$,$S$的长度为$n$,$P$的长度为$m$
扩展KMP实际是计算$E$数组,设$E[i]$为字符串$S[i..n-1]$与字符串$P$的最大公共前缀
尝试数学归纳法
$E[0]$显然只能直接依次比对,因为什么信息都没有
假设$E[0]\sim E[i-1]$都计算出来了,现在计算$E[i]$
不妨= =,利用$E[i-1]$的信息,第二行的矩形的宽度表示$E[i-1]$,只有这个信息是不够的,否则计算$E[i]$还是需要重复跑计算$E[i-1]$跑过的距离
假设有“$P[i..m-1]$与$P$的最大公共前缀长度”的信息,设为$N[i]$
- 如果$i\geqslant (i-1)+E[i-1]$,说明上个信息对这个没帮助,直接往右跑
- 如果$i+N[1]\geqslant (i-1)+E[i-1]$,由于红线右边的P与S是否相等不确定,因此要舍去红线右边的部分,那么经过如图的变形(第三排和第四排的矩形),可以直接从上一次失败的地方继续(红线处)
- 如果$i+N[1]<(i-1)+E[i-1]$,因为在红线前就失败了,那么直接就可以得到$E[i]=N[1]$
由于第一种情况中仍然可能重复对比$S$和$P$,$E[i-1]$可能不是最好的选择,那么我们就选红线最靠右的$E[k]$来计算$E[i]$
- 如果$i\geqslant j$,说明上个信息对这个没帮助,直接往右跑
- 如果$i+N[i-k]\geqslant j$,由于红线右边的P与S是否相等不确定,因此要舍去红线右边的部分,那么经过如图的变形(第三排和第四排的矩形),可以直接从上一次失败的地方继续(红线处)
- 如果$i+N[i-k]< j$,因为在红线前就失败了,那么直接就可以得到$E[i]=N[i]$
这样,在知道$N[i]$的情况下,可以$\mathcal{O}(n)$得到$E$数组(因为S与P的比较不会重复),前两种情况可以合并为一个,并且可以省去单独计算$E[0]$
代码:
inline void getE() {
int k = 0, j=0;
REP(i,0,n) {
if( i>=j || i+N[i-k] >= j ) {
if( i>=j ) j=i;
while( j < n && j - i < m && s[j] == p[j-i]) j++;
E[i] = j-i;
k = i;
} else {
E[i] = N[i-k];
}
}
}
对于$N$数组,和求$E$数组类似
$N[0]=m$,$N[1]$直接计算,假设$N[0]\sim N[i-1]$都求出来了,选红线最靠右的$N[k]$,那么
- 如果$i\geqslant j$,说明上个信息对这个没帮助,直接往右跑
- 如果$i+N[i-k]\geqslant j$,那么直接从上一次失败的地方继续(红线处)
- 如果$i+N[i-k]< j$,因为在红线前就失败了,那么$N[i]=N[i-k]$
代码:
inline void getN() {
int k = 0, j=0;
N[0] = m;
REP(i,1,m) {
if( i>=j || i+N[i-k] >= j ) {
if( i>=j ) j=i;
while( j < m && p[j] == p[j-i]) j++;
N[i] = j-i;
k = i;
} else {
N[i] = N[i-k];
}
}
}
HDU-2594
题目
给两个字符串,第一个字符串与第二个字符串的最长公共前缀后缀
题解
直接套用EXKMP第一个字符串设为p,第二个字符串设为s,找到第一个i,使E[i]=n-i,就可以了
AC代码
#include<cstdio>
#include<cstring>
#include<cassert>
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__),fflush(stdout)
#else
#define DBG(...) (void)0
#endif // sahdsg
using namespace std;
#define REP(r,x,y) for(register int r=(x); r<(y); r++)
#define MAXN 50007
char p[MAXN], s[MAXN];
int N[MAXN], m;
int E[MAXN], n; inline void getN() {
int k = 0, j=0;
N[0] = m;
REP(i,1,m) {
if( i>=j || i+N[i-k] >= j ) {
if( i>=j ) j=i;
while( j < m && p[j] == p[j-i]) j++;
N[i] = j-i;
k = i;
} else {
N[i] = N[i-k];
}
}
} inline void getE() {
int k = 0, j=0;
REP(i,0,n) {
if( i>=j || i+N[i-k] >= j ) {
if( i>=j ) j=i;
while( j < n && j - i < m && s[j] == p[j-i]) j++;
E[i] = j-i;
k = i;
} else {
E[i] = N[i-k];
}
}
} int main() {
#ifdef sahdsg
freopen("in.txt", "r", stdin);
#endif // sahdsg
while(~scanf("%s%s", p,s)) {
n=strlen(s),m=strlen(p);
getN();
getE();
int t=-1;
// REP(i,0,n) DBG("%d ", E[i]);
REP(i,0,n) {
if(E[i]==n-i) {
t=i;
break;
}
}
if(~t) {
printf("%s %d\n", s+t, n-t);
} else puts("0");
} return 0;
}
扩展KMP笔记的更多相关文章
- HDU 4333 Revolving Digits [扩展KMP]【学习笔记】
题意:给一个数字,每一次把它的最后一位拿到最前面,一直那样下去,分别求形成的数字小于,等于和大于原来数的个数. SAM乱搞失败 当然要先变SS了 然后考虑每个后缀前长为n个字符,把它跟S比较就行了 如 ...
- 扩展kmp学习笔记
kmp没写过,扩展kmp没学过可还行. 两个愿望,一次满足 (该博客仅用于防止自己忘记,不保证初学者能看懂我在瞎bb什么qwq) 用途 对于串\(s1,s2\),可以求出\(s2\)与\(s1\)的每 ...
- 扩展KMP算法
一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...
- 扩展KMP --- HDU 3613 Best Reward
Best Reward Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...
- KMP和扩展KMP
文章网上太多这里提一下代码细节: KMP: scanf("%s\n",s); scanf("%s\n",t); int ls=strlen(s),lt=strl ...
- UVA5876 Writings on the Wall 扩展KMP
扩展KMP的简单题. #include<stdio.h> #include<string.h> #define maxn 51010 char s[maxn],t[maxn]; ...
- hdu4333 扩展KMP
慢慢研究可以发现,可以用扩展kmp来求.由于扩展kmp的next[]只有一部分,当前位子前面那部分和母串的后部分,所以可以将字符串复制接在后面一次. 先求如果next[]>0&& ...
- 扩展KMP
刘雅琼论文 http://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 论文讲的非常详细. 给定母串S,子串T,n=strlen(S),m=st ...
- HDU 3336 扩展kmp
题目大意: 找到字符串中所有和前缀字符串相同的子串的个数 对于这种前缀的问题,通常通过扩展kmp来解决 其实吧这是我第一次做扩展kmp的题目,原来确实看过这个概念,今天突然做到,所以这个扩展kmp的模 ...
随机推荐
- oracle中创建用户、角色、权限、表空间简单使用
一.数据库用户 创建数据库用户 create user 用户名 identified by 密码; 授权 grant 权限名 to 用户名; 查看当前用户权限 select * from sessio ...
- How to: Handle Renamings and Deletions of Business Classes and their Properties 如何:处理业务类及其属性的重命名和删除
When developing an XAF application, you may be required to rename a persistent class or property due ...
- js-04-函数学习
一.什么为函数? 函数是用来执行某些特定功能的代码,为了减少代码的重复使用,将函数作为代码使用,在需要时随时调用使用. 二.函数的声明(函数名严格区分大小写) 1.function命令 functio ...
- 从零开始学vuejs
最近一段时间都花在了学习vue上,还总是断断续续的,学习的效果不是很明显,思考了好久了,应该是没有进行一个系统的总结,导致很多知识点总是似是而非,而且也有一部分是思维还没有从java转变过来,废话不多 ...
- Auto入门 之 常用概念
1.SEMI (Semiconductor Equipment And Materials International) 国际半导体设备与材料产业协会 2.SECS SECS协议是基于RS-232或 ...
- Python 基础语法-str
字符串常见操作 find:检测str是否包含在 mystr 中,如果是返回开始的索引值,否则返回 -1 mystr.index(str, start=0, end=len(mystr)) count: ...
- idea中git分支、合并与使用
1.分支的新建与合并使用场景介绍 让我们来看一个简单的分支新建与分支合并的例子,实际工作中你可能会用到类似的工作流. 你将经历如下步骤: 开发某个网站. 为实现某个新的需求.问题(#53问题),创建一 ...
- 新手学Html之JSP简介——入门(一)
1.JSP:动态网页 静态动态:是否随着时间地点.用户操作的改变而改变 动态网页需要用到 服务端脚本语言(JSP) 2.架构 CS:Client Server 不足: a.如果软件升级.那么全部软件都 ...
- CF#603 Div2
差不多半年没打cf,还是一样的菜:不过也没什么,当时是激情,现在已是兴趣了,开心就好. A Sweet Problem 思维,公式推一下过了 B PIN Codes 队友字符串取余过了,结果今天早上一 ...
- [PHP]关于连接MySQL的问题
概述 PHP中无论使用MySQL函数抑或PDO连接MySQL服务器,都允许有两种方式,一是通过TCP网络层,一是通过unix socket: PHP并没有给出指明用何种方式去连接数据库,决定使用何种方 ...