来源:Redislabs
作者:Pieter Cailliau、LucaAntiga
翻译:Kevin (公众号:中间件小哥)

简介

今天我们发布了一个 RedisAI 的预览版本,预集成了[tensor]werk组件。RedisAI 是一个可以服务 tensors 任务和执行深度学习任务的 Redis 模块。在这篇博客中,我们将介绍这个新模块的功能,并解释我们为什么会认为它能颠覆机器学习(ML)、深度学习(DL)的解决方案。
RedisAI 的产生有两大原因:首先,把数据迁移到执行 AI 模型的主机上成本很高,并且对实时性的体验很大的影响;其次,Serving 模型一直以来都是 AI 领域中 DevOps 的挑战。我们构建 RedisAI 的目的,是让用户可以在不搬迁Redis 多节点数据的情况下,也能很好地服务、更新并集成自己的模型。

数据位置很重要

为了证明运行机器学习、深度学习模型中数据位置的重要性,我们举一个聊天机器人的例子。聊天机器人通常使用递归神经网络模型(RNN),来解决一对一(seq2seq)用户问答场景。更高级的模型使用两个输入向量、两个输出向量,并以数字中间状态向量的方式来保存对话的上下文。模型使用用户最后的消息作为输入,中间状态代表对话的历史,而它的输出是对用户消息和新中间状态的响应。

为了支持用户自定义的交互,这个中间状态必须要保存在数据库中,所以 Redis +RedisAI是一个非常好的选择,这里将传统方案和 RedisAI 方案做一个对比。

1、传统方案

使用 Flask 应用或其它方案,集成 Spark 来构建一个聊天机器人。当收到用户对话消息时,服务端需要从 Redis 中获取到中间的状态。因为在 Redis 中没有原生的数据类型可用于 tensor,因此需要先进行反序列化,并且在运行递归神经网络模型(RNN)之后,保证实时的中间状态可以再序列化后保存到 Redis 中。

考虑到 RNN 的时间复杂度,数据序列化/反序列化上 CPU 的开销和巨大的网络开销,我们需要一个更优的解决方案来保证用户体验。

2、RedisAI 方案
在 RedisAI 中,我们提供了一种叫 Tensor 的数据类型,只需使用一系列简单的命令,即可在主流的客户端中对 Tensor向量进行操作。同时,我们还为模型的运行时特性提供了另外两种数据类型:Models 和 Scripts。

Models 命令与运行的设备(CPU 或 GPU)和后端自定义的参数有关。RedisAI 内置了主流的机器学习框架,如 TensorFlow、Pytorch 等,并很快能够支持 ONNX Runtime 框架,同时增加了对传统机器学习模型的支持。然而,很棒的是,执行 Model 的命令对其后端是不感知的:

AI.MODELRUN model_key INPUTS input_key1 …  OUTPUTS output_key1 ..

这允许用户将后端选择(通常由数据专家来决定)和应用服务解耦合开来,置换模型只需要设置一个新的键值即可,非常简单。RedisAI 管理所有在模型处理队列中的请求,并在单独的线程中执行,这样保障了 Redis依然可以响应其它正常的请求。Scripts 命令可以在 CPU 或GPU 上执行,并允许用户使用 TorchScript 来操作Tensors 向量,TorchScript 是一个可操作 Tensors 向量的类 Python 自定义语言。这可以帮助用户在执行模型前对数据进行预处理,也可以用在对结果进行后处理的场景中,例如通过集成不同的模型来提高性能。

我们计划未来通过 DAG 命令支持批量执行命令,这会允许用户在一个原子性操作中批量执行多个 RedisAI 命令。例如在不同的设备上运行一个模型的不同实例,通过脚本对执行结果做平均预测。使用 DAG 命令,就可并行地进行计算,再执行聚合操作。如果需要全量且更深的特性列表,可以访问 redisai.io。新的架构可以简化为:

模型服务可以更简单

在生产环境中,使用 Jupyter notebooks 来编写代码并将其部署在Flask 应用并不是最优方案。用户如何确定自己的资源是最佳的呢?如果用户主机宕机之后,上述聊天机器人的中间状态会发生什么呢?用户可能会重复造轮子,实现已有的 Redis 功能来解决问题。另外,由于组合方案的复杂度往往超出预期,固执地坚持原有的解决方案也会非常有挑战性。RedisAI 通过 Redis 企业级的数据存储方案,支持深度学习所需要的 Tensors、Models 和 Scripts等数据类型,很好的实现了 Redis 和 AI 模型的深度整合。如果需要扩展模型的计算能力,只需要简单的对Redis 集群进行扩容即可,所以用户可以在生产环境中增加尽可能多的模型,从而降低基础设施成本和总体成本。最后,RedisAI 很好地适应了现有的 Redis 生态,允许用户执行脚本来预处理、后处理用户数据,可使用 RedisGear 对数据结构做正确的转换,可使用RedisGraph 来保持数据处于最新的状态。

结论和后续计划

1、短期内,我们希望使用RedisAI 在支持 3 种主流后端(Tensorflow、Pytorch 和 ONNX Runtime)的情况下,尽快稳定下来并达到稳定状态。
2、我们希望可以动态加载这些后端,用户可以自定义的加载指定的后端。例如,这将允许用户使用Tensorflow Lite 处理边缘用例。3、计划实现自动调度功能,可以实现在同一模型中实现不同队列的自动合并。4、RedisAI会统计模型的运行数据,用于衡量模型的执行情况。

5、完成上文中解释的DAG 特性。

让你的AI模型尽可能的靠近数据源的更多相关文章

  1. CANN5.0黑科技解密 | 别眨眼!缩小隧道,让你的AI模型“身轻如燕”!

    摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的 ...

  2. AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  3. Microsoft宣布为Power BI提供AI模型构建器,关键驱动程序分析和Azure机器学习集成

    微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析 ...

  4. 炸金花游戏(3)--基于EV(期望收益)的简单AI模型

    前言: 炸金花这款游戏, 从技术的角度来说, 比德州差了很多. 所以他的AI模型也相对简单一些. 本文从EV(期望收益)的角度, 来尝试构建一个简单的炸金花AI. 相关文章: 德州扑克AI--Prog ...

  5. 最强云硬盘来了,让AI模型迭代从1周缩短到1天

    摘要:华为云擎天架构+ Flash-Native存储引擎+低时延CurreNET,数据存储和处理还有啥担心的? 虽然我们已经进入大数据时代,但多数企业数据利用率只有10%,数据的价值没有得到充分释放. ...

  6. 如何借助 JuiceFS 为 AI 模型训练提速 7 倍

    背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练 ...

  7. AI模型运维——NVIDIA驱动、cuda、cudnn、nccl安装

    目前大部分使用GPU的AI模型,都使用的英伟达这套. 需要注意的是,驱动.cuda.cudnn版本需要一一对应,高低版本互不兼容. 驱动和cuda对应关系:https://docs.nvidia.co ...

  8. 二手车价格预测 | 构建AI模型并部署Web应用 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  9. 基于语法树和概率的AI模型

    语法树是句子结构的图形表示,它代表了句子的推导结果,有利于理解句子语法结构的层次.简单说,语法树就是按照某一规则进行推导时所形成的树. 有了语法树,我们就可以根据其规则自动生成语句,但是语法树本身是死 ...

随机推荐

  1. Element-UI 2.4.11 版本 使用注意(发现一点更新一点)

    1.$Vue.$refs.addForm.resetFields() 的resetFields()方法重置到默认值并不是 ,你在form绑定对象上写的默认值 ,而是这个form被渲染出来之后第一次赋到 ...

  2. idea 2019安装完(打不开&&启动不了)问题解决(最全解决方法)

    今天从网盘把idea下载下来后一路安装,准备 设置的时候不管怎么打开 他都无动于衷没办法,卸了安,安了卸,反复折腾了 好几遍 它都无动于衷.于是开始在百度上找答案看了 好几个 方法一遍一遍试还是不行, ...

  3. str类型转json,str类型转list

    python str类型与json格式转换或者list格式转换 str转list: import ast #####方法一##### datas = '{"carname":&qu ...

  4. Zookeeper一致性级别

    一致性级别划分 关于分布式系统一致性级别的划分,有些文章划分为强一致性,顺序一致性以及弱一致性. 最终一致性属于弱一致性,最终一致性根据更新数据后各进程访问到数据的时间和方式的不同划分为: 因果一致性 ...

  5. spring全家桶的pom的基本配置

    <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...

  6. ionic3.x脚手架(基于个人项目自用)

    ionic3项目开发脚手架(基于个人练习项目) 一.    基于ionic3的生产环境搭建 1.    配置安卓SDK: 安装jdk  --->  安装AndroidSDK (1)      安 ...

  7. iOS仿写下厨房

    把之前简书的博客搬到博客园了,还是放在一个地方看着舒服. 先看一下做的效果,是不是还不错?(可以看一下早餐那块的轮播,上面盖着一个都是点点的图片,但是它不是和轮播一起滚动的,是盖在轮播上面的,需要在那 ...

  8. Springboot源码分析之事务问题

    摘要: 事务在后端开发中无处不在,是数据一致性的最基本保证.要明白进事务的本质就是进到事务切面的代理方法中,最常见的是同一个类的非事务方法调用一个加了事务注解的方法没进入事务.我们以cglib代理为例 ...

  9. 关于turtle画蟒蛇小实例

    import turtle turtle.setup(800,600) turtle.pensize(25) turtle.pencolor('blue') turtle.penup() #抬笔 tu ...

  10. 别说你不会开发exe程序,拿走不谢。

    本文重点介绍如何将我们写的java代码打包成在电脑上可以运行的exe文件 本文重点介绍如何将我们写的java代码打包成在电脑上可以运行的exe文件.这里只介绍直接打包成exe的方法,至于打包成exe安 ...