python并发之多进程
#mutiprocessing模块
python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。
multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。
#Process类的介绍
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
group参数未使用,值始终为None
target表示调用对象,即子进程要执行的任务
args表示调用对象的位置参数元组,args=(1,2,'egon',)
kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
name为子进程的名称
p.start():启动进程,并调用该子进程中的p.run()
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True
p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
p.name:进程的名称
p.pid:进程的pid
p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
注意:在windows中Process()必须放到# if __name__ == '__main__':下
Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module.
If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources).
This is the reason for hiding calls to Process() inside
if __name__ == "__main__"
since statements inside this if-statement will not get called upon import.
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。
如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。
这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。
创建并开启子进程的两种方式
进程直接的内存空间是隔离的
#进程的内存空间是隔离的
from multiprocessing import Process
n=0
def word():
global n
n=10000
print('子进程内:',n)
if __name__ == '__main__':
p=Process(target=word)
p.start()
print('主进程内:',n)
from multiprocessing import Process
import time
m=1
def work():
global m
m=2000
time.sleep(30)
print('子进程中的值为:',m)
if __name__ == '__main__':
x=Process(target=work)
x.start()
time.sleep(5)
print('父亲进程中的值为:',m)
## 打印结果:
主进程内: 0
父亲进程中的值为: 1
子进程内: 10000
子进程中的值为: 2000
socket通信变成并发的形式
from socket import *
from multiprocessing import Process
server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)
def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break
if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start()
server端
from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))
while True:
msg=input('>>: ').strip()
if not msg:continue
client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))
多个client端
每来一个客户端,都在服务端开启一个进程,如果并发来一个万个客户端,要开启一万个进程吗,你自己尝试着在你自己的机器上开启一万个,10万个进程试一试。
解决方法:进程池
Process对象的join方法
from multiprocessing import Process
import time
import random
class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__()
def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name)
p=Piao('egon')
p.start()
p.join(0.0001) #等待p停止,等0.0001秒就不再等了
print('开始')
join:主进程等,等待子进程结束
from multiprocessing import Process
import time
import random
def piao(name):
print('%s is piaoing' %name)
time.sleep(random.randint(1,3))
print('%s is piao end' %name)
p1=Process(target=piao,args=('egon',))
p2=Process(target=piao,args=('alex',))
p3=Process(target=piao,args=('yuanhao',))
p4=Process(target=piao,args=('wupeiqi',))
p1.start()
p2.start()
p3.start()
p4.start()
#有的同学会有疑问:既然join是等待进程结束,那么我像下面这样写,进程不就又变成串行的了吗?
#当然不是了,必须明确:p.join()是让谁等?
#很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p,
#详细解析如下:
#进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了
#而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键
#join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待
# 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间
p1.join()
p2.join()
p3.join()
p4.join()
print('主线程')
#上述启动进程与join进程可以简写为
# p_l=[p1,p2,p3,p4]
#
# for p in p_l:
# p.start()
#
# for p in p_l:
# p.join()
有了join,程序不就是串行了吗???
Process对象的其他方法或属性(了解)
#进程对象的其他方法一:terminate,is_alive
from multiprocessing import Process
import time
import random
class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__()
def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,5))
print('%s is piao end' %self.name)
p1=Piao('egon1')
p1.start()
p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True
print('开始')
print(p1.is_alive()) #结果为False
terminate与is_alive
from multiprocessing import Process
import time
import random
class Piao(Process):
def __init__(self,name):
# self.name=name
# super().__init__() #Process的__init__方法会执行self.name=Piao-1,
# #所以加到这里,会覆盖我们的self.name=name
#为我们开启的进程设置名字的做法
super().__init__()
self.name=name
def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name)
p=Piao('egon')
p.start()
print('开始')
print(p.pid) #查看pid
name与pid

python并发之多进程的更多相关文章
- python 并发之多进程实现
一.multipricessing模块的介绍 python中的多线程无法利用多核优势,如果想要充分的使用多核CPU资源,在python中大部分情况下需要用多线程,python提供了multiproce ...
- python高级之多进程
python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package that supports s ...
- 第八篇:python高级之多进程
python高级之多进程 python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package ...
- Python多线程和多进程谁更快?
python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...
- 搞定python多线程和多进程
1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...
- python服务端多进程压测工具
本文描述一个python实现的多进程压测工具,这个压测工具的特点如下: 多进程 在大多数情况下,压测一般适用于IO密集型场景(如访问接口并等待返回),在这种场景下多线程多进程的区分并不明显(详情请参见 ...
- python多线程和多进程
1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...
- Python中使用多进程来实现并行处理的方法小结
进程和线程是计算机软件领域里很重要的概念,进程和线程有区别,也有着密切的联系,先来辨析一下这两个概念: 1.定义 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和 ...
- python开发之路:python数据类型(老王版)
python开发之路:python数据类型 你辞职当了某类似微博的社交网站的底层python开发主管,官还算高. 一次老板让你编写一个登陆的程序.咔嚓,编出来了.执行一看,我的妈,报错? 这次你又让媳 ...
随机推荐
- 嵌入式、C语言位操作的一些技巧汇总
下面分享关于位操作的一些笔记: 一.位操作简单介绍 首先,以下是按位运算符: 在嵌入式编程中,常常需要对一些寄存器进行配置,有的情况下需要改变一个字节中的某一位或者几位,但是又不想改变其它位原有的值, ...
- 百度杯 black_hole复现
在这次复现中,经历了太多挫折. 刚刚开始的时候本地调试 get不到shell,就很疑问,而且不会爆破,想学下怎么爆破出那个0x05, 后来问了位师傅 ,他说用retdl_solve 试试,我就跑去学了 ...
- 剖析nsq消息队列目录
剖析nsq消息队列(一) 简介及去中心化实现原理 剖析nsq消息队列(二) 去中心化源码解析 剖析nsq消息队列(三) 消息传输的可靠性和持久化[一] 剖析nsq消息队列(三) 消息传输的可靠性和持久 ...
- 2019-9-28:渗透测试,基础学习,pgp常量,逻辑运算,DNS投毒,笔记
sunny.exe clientid 隧道ID route -n 查看网关netstat -rn 查看网关 DNS劫持ettercap用来内网渗透测试使用,可以嗅探内网,DNS劫持等攻击1,在攻击者电 ...
- Redis系列(二):Redis高可用集群
一.集群模式 Redis集群是一个由多个主从节点组成的高可用集群,它具有复制.高可用和分片等特性 二.集群部署 1.环境 3台主机分别是: 192.168.160.146 192.168.160.15 ...
- Ubuntu 一键伪装成Win 10,Kali Linux 2019 kali-undercover软件嫁接;
今天,下午刷手机的时候,突然看到kali出了一个非常新颖的主题:该主题可以使得kali系统伪装成windows 10而变得低调起来:就像下面这样: 具体新闻链接:https://www.freebuf ...
- 01 JavaScript变量的声明、变量的使用、变量的命名规范和规则
变量的声明,关键字:var //声明一个变量 var name; //给变量赋值 name = '哈士奇'; //声明并赋值一个变量 var name = '哈士奇'; 变量的使用 //声明并赋值一个 ...
- nginx中proxy_pass小斜杠
nginx中proxy_pass小斜杠 1. 故事背景 相信做微信公众号开发的朋友都知道,要想在微信中预览效果,必须使用域名访问.很多朋友使用内网穿透工具.不仅不好用还不稳定.所以,发挥脸厚吃天下的态 ...
- jQuery.hasClass() 函数详解
jQuery.hasClass() 函数详解 hasClass()函数用于指示当前jQuery对象所匹配的元素是否含有指定的css类名. 该函数属于jQuery对象(实例). 语法 JavaScrip ...
- Python基础班学习笔记
本博客采用思维导图式笔记,所有思维导图均为本人亲手所画.因为本人也是初次学习Python语言所以有些知识点可能不太全. 基础班第一天学习笔记:链接 基础班第二天学习笔记:链接 基础班第三天学习笔记:链 ...