#mutiprocessing模块
python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。   multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。 需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。 #Process类的介绍
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 group参数未使用,值始终为None target表示调用对象,即子进程要执行的任务 args表示调用对象的位置参数元组,args=(1,2,'egon',) kwargs表示调用对象的字典,kwargs={'name':'egon','age':18} name为子进程的名称 p.start():启动进程,并调用该子进程中的p.run()
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置 p.name:进程的名称 p.pid:进程的pid p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可) p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可) 注意:在windows中Process()必须放到# if __name__ == '__main__':下
Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module.
If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources).
This is the reason for hiding calls to Process() inside if __name__ == "__main__"
since statements inside this if-statement will not get called upon import.
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。
如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。
这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。 创建并开启子进程的两种方式 进程直接的内存空间是隔离的
#进程的内存空间是隔离的
from multiprocessing import Process
n=0 def word():
global n
n=10000
print('子进程内:',n) if __name__ == '__main__':
p=Process(target=word)
p.start()
print('主进程内:',n) from multiprocessing import Process
import time
m=1
def work():
global m
m=2000
time.sleep(30)
print('子进程中的值为:',m) if __name__ == '__main__':
x=Process(target=work)
x.start()
time.sleep(5)
print('父亲进程中的值为:',m) ## 打印结果:
主进程内: 0
父亲进程中的值为: 1
子进程内: 10000
子进程中的值为: 2000 socket通信变成并发的形式 from socket import *
from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5) def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start() server端
from socket import * client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8')) 多个client端
每来一个客户端,都在服务端开启一个进程,如果并发来一个万个客户端,要开启一万个进程吗,你自己尝试着在你自己的机器上开启一万个,10万个进程试一试。
解决方法:进程池
Process对象的join方法
from multiprocessing import Process
import time
import random class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__()
def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name) p=Piao('egon')
p.start()
p.join(0.0001) #等待p停止,等0.0001秒就不再等了
print('开始') join:主进程等,等待子进程结束 from multiprocessing import Process
import time
import random
def piao(name):
print('%s is piaoing' %name)
time.sleep(random.randint(1,3))
print('%s is piao end' %name) p1=Process(target=piao,args=('egon',))
p2=Process(target=piao,args=('alex',))
p3=Process(target=piao,args=('yuanhao',))
p4=Process(target=piao,args=('wupeiqi',)) p1.start()
p2.start()
p3.start()
p4.start() #有的同学会有疑问:既然join是等待进程结束,那么我像下面这样写,进程不就又变成串行的了吗?
#当然不是了,必须明确:p.join()是让谁等?
#很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p, #详细解析如下:
#进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了
#而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键
#join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待
# 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间
p1.join()
p2.join()
p3.join()
p4.join() print('主线程') #上述启动进程与join进程可以简写为
# p_l=[p1,p2,p3,p4]
#
# for p in p_l:
# p.start()
#
# for p in p_l:
# p.join() 有了join,程序不就是串行了吗??? Process对象的其他方法或属性(了解) #进程对象的其他方法一:terminate,is_alive
from multiprocessing import Process
import time
import random class Piao(Process):
def __init__(self,name):
self.name=name
super().__init__() def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,5))
print('%s is piao end' %self.name) p1=Piao('egon1')
p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True print('开始')
print(p1.is_alive()) #结果为False terminate与is_alive from multiprocessing import Process
import time
import random
class Piao(Process):
def __init__(self,name):
# self.name=name
# super().__init__() #Process的__init__方法会执行self.name=Piao-1,
# #所以加到这里,会覆盖我们的self.name=name #为我们开启的进程设置名字的做法
super().__init__()
self.name=name def run(self):
print('%s is piaoing' %self.name)
time.sleep(random.randrange(1,3))
print('%s is piao end' %self.name) p=Piao('egon')
p.start()
print('开始')
print(p.pid) #查看pid name与pid ![](https://img2018.cnblogs.com/blog/1165773/201909/1165773-20190911165924416-967795451.png)

python并发之多进程的更多相关文章

  1. python 并发之多进程实现

    一.multipricessing模块的介绍 python中的多线程无法利用多核优势,如果想要充分的使用多核CPU资源,在python中大部分情况下需要用多线程,python提供了multiproce ...

  2. python高级之多进程

    python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package that supports s ...

  3. 第八篇:python高级之多进程

    python高级之多进程   python高级之多进程 本节内容 多进程概念 Process类 进程间通讯 进程同步 进程池 1.多进程概念 multiprocessing is a package ...

  4. Python多线程和多进程谁更快?

    python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...

  5. 搞定python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

  6. python服务端多进程压测工具

    本文描述一个python实现的多进程压测工具,这个压测工具的特点如下: 多进程 在大多数情况下,压测一般适用于IO密集型场景(如访问接口并等待返回),在这种场景下多线程多进程的区分并不明显(详情请参见 ...

  7. python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

  8. Python中使用多进程来实现并行处理的方法小结

    进程和线程是计算机软件领域里很重要的概念,进程和线程有区别,也有着密切的联系,先来辨析一下这两个概念: 1.定义 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和 ...

  9. python开发之路:python数据类型(老王版)

    python开发之路:python数据类型 你辞职当了某类似微博的社交网站的底层python开发主管,官还算高. 一次老板让你编写一个登陆的程序.咔嚓,编出来了.执行一看,我的妈,报错? 这次你又让媳 ...

随机推荐

  1. Vue注册组件命名时不能用大写的原因浅析

    命名使用注意事项: https://www.jb51.net/article/160227.htm

  2. 移动端vue项目的图片上传插件

    有一移动端项目,使用的vant-ui.可是vant自带的Uploader似乎不支持一次选择多张图片上传的功能. 于是乎:在https://www.npmjs.com/查找发现找到 vue-upload ...

  3. keypress 和 blur 事件冲突的问题

    需求:点击需求:点击添加标签,出来input框,内容输入完成后点击enter键和blur时都可以执行提交标签的效果,提交时对内容进行判断,执行完成后清除input内的内容.如下图 问题:内容输入完成后 ...

  4. GeoServer 发布的图层预览不了

    说明: 在用Geoserver发布Postgis发布的图层后,去LayerPreview中预览,但是选openlayers时,没有跳转到预览页面,而是弹出了下载WMS. 解决方案: 用KML方式预览时 ...

  5. GitHub上优秀的开源项目(转载)

    转载出处:https://github.com/Trinea/android-open-project 第一部分 个性化控件(View) 主要介绍那些不错个性化的 View,包括 ListView.A ...

  6. 解决failed to push some refs to 'git@github.com:TQBX/GIT-Github-.git'问题

    解决以下问题问题: git pull origin master --allow-unrelated-histories 进入vim界面->ESC->:wq 重复第一步->git p ...

  7. 2019-11-28:ssrf基础学习,笔记

    ssrf服务端请求伪造ssrf是一种由恶意访问者构造形成由服务端发起请求的一个安全漏洞,一般情况下,ssrf访问的目标是从外网无法访问的内部系统,正式因为它是由服务端发起的,所以它能请求到它相连而外网 ...

  8. vue e.path 移动端兼容

    作用 e.path 用来获取点击元素及以上所有父元素的一个数组 问题 当在移动端会有获取不到e.path的问题 不兼容 解决 let path = event.path || (event.compo ...

  9. 对照谈-官方spring-boot-starter和自定义starter异同分析

    在前面我讲用spring-boot-starter-mail发邮件的时候,我侧重看的是spring boot发邮件的便利性,今天,我们聊下另外一个方面,spring-boot-starter自身的结构 ...

  10. Spring MVC使用ModelAndView进行重定向

    1.Servlet重定向forward与redirect: 使用servlet重定向有两种方式,一种是forward,另一种就是redirect.forward是服务器内部重定向,客户端并不知道服务器 ...