1.1 YARN基本架构

    YARN是Hadoop2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

1.2 YARN基本组成结构

    YARN总体上仍然是Master/Slave结构,在这个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManger负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以追踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManager启动可以占用一定资源的任务。由于不同的ApplicationMaste被分布到不同的节点上,因此它们之间不会互相影响。

YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

1.ResourceManager(RM)

        RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Application Manager,ASM)。

  • 调度器

      调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可拔插的组件,用户可以根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler 和Capacity Scheduler等。

  • 应用程序管理器

应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

2.ApplicationMaster(AM)

用户提交的每个应用程序均包含一个AM,主要功能包括:

  • 与RM调度器协商以获取资源(用Container表示);
  • 将得到的任务进一步分配给内部的任务;
  • 与NM通信以启动/停止任务;
  • 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
3.NodeManager(NM)

    NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接受并处理来自AM的Container启动/停止等各种请求。

4.Container

    Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container在描述的资源。

1.3 YARN工作流程

  • 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。
  • ResourceManager为该应用程序分配第一个Container,并与对应的NodeManager通信,要求它在这个Container中启动应用程序的ApplicationMaster。
  • ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束。
  • ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。
  • 一旦ApplicationMaster申请到资源后,便于对于的NameNode通信,要求它启动任务。
  • NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。
  • 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

     在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。

  • 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

2016/09/27 Hadoop Yarn的更多相关文章

  1. Hadoop Yarn内存资源隔离实现原理——基于线程监控的内存隔离方案

    注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目 ...

  2. Hadoop Yarn配置项 yarn.nodemanager.resource.local-dirs探讨

    1. What is the recommended value for "yarn.nodemanager.resource.local-dirs"? We only have ...

  3. hadoop+yarn+hbase+storm+kafka+spark+zookeeper)高可用集群详细配置

    配置 hadoop+yarn+hbase+storm+kafka+spark+zookeeper 高可用集群,同时安装相关组建:JDK,MySQL,Hive,Flume 文章目录 环境介绍 节点介绍 ...

  4. Hadoop YARN:调度性能优化实践(转)

    https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章 ...

  5. Hadoop YARN 100-1知识点

    0 YARN中实体 资源管理者(resource manager, RM) 长时间运行的守护进程,负责管理集群上资源的使用 节点管理者(node manager, NM) 长时间运行的守护进程,在集群 ...

  6. hadoop yarn running beyond physical memory used

    老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-c ...

  7. 2016.09.14,英语,《Using English at Work》全书笔记

    半个月时间,听完了ESLPod出品的<Using English at Work>,笔记和自己听的时候的备注列在下面.准备把每个语音里的快速阅读部分截取出来,放在手机里反复听. 下一阶段把 ...

  8. Hadoop YARN配置参数剖析—RM与NM相关参数

    注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) ...

  9. hadoop错误org.apache.hadoop.yarn.exceptions.YarnException Unauthorized request to start container

    错误: 14/04/29 02:45:07 INFO mapreduce.Job: Job job_1398704073313_0021 failed with state FAILED due to ...

随机推荐

  1. vue中自定义html文件的模板

    如果默认生成的 HTML 文件不适合需求,可以创建/使用自定义模板. 一是通过 inject 选项,然后传递给定制的 HTML 文件.html-webpack-plugin 将会自动注入所有需要的 C ...

  2. 理解Spark SQL(三)—— Spark SQL程序举例

    上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的.使用这个函数执行SQL语句前需要 ...

  3. Docker从入门到实践(4-1)

    使用 Docker 镜像 在之前的介绍中,我们知道镜像是 Docker 的三大组件之一. Docker 运行容器前需要本地存在对应的镜像,如果本地不存在该镜像,Docker 会从镜像仓库下载该镜像. ...

  4. 20191031-3 beta week 1/2 Scrum立会报告+燃尽图 01

    此作业要求参见[https://edu.cnblogs.com/campus/nenu/2019fall/homework/9911] 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 ...

  5. Dart Learn Notes 01

    关于Dart的几点重要说明 在Dart中所有变量都是一个对象,所有对象都是一个类的实例.每个数字,方法,甚至是Null都是对象.所有的对吸纳更都是集成自Object这个类.(这个说法其实是很像Java ...

  6. BeanUtils.copyProperties()怎样去掉字段首尾的空格

    背景 下午三时许,笔者正戴着耳机听着歌开心的敲着bug,忽然听到办公室的吵架声,原来是ios开发和产品小姐姐吵起来了,为了一个车牌号的校验问题.起因是ios传的车牌号没有将字符串的首尾空格去掉,后端直 ...

  7. 01-tornado练习-tornado简介

    # coding = utf-8 """ 启动一个tornado的web服务 """ import tornado.web from tor ...

  8. ip地址计算

    1.多少个子网? 2x个,其中x为被遮盖(取值为1)的位数.例如,在11000000(这个值是子网掩码的最后几位,例如,mask=18)中,取值为1的位数为2,因此子网数位22=4个: 2.每个子网包 ...

  9. Java之Retry重试机制详解

    应用中需要实现一个功能: 需要将数据上传到远程存储服务,同时在返回处理成功情况下做其他操作.这个功能不复杂,分为两个步骤:第一步调用远程的Rest服务上传数据后对返回的结果进行处理:第二步拿到第一步结 ...

  10. MATLAB工具包——curvelet变换的理解(转)

    curvelet下载的curvelet工具包,有以下三个文件:fdct_usfft_matlab.fdct_wrapping_matlab.mecv三个文件夹添加到matlab路径中即可. curve ...